Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Hartford is active.

Publication


Featured researches published by Christine Hartford.


Clinical Pharmacology & Therapeutics | 2007

Rapamycin: Something Old, Something New, Sometimes Borrowed and Now Renewed

Christine Hartford; Mark J. Ratain

The molecular target of rapamycin (mTOR) is central to a complex intracellular signaling pathway and is involved in diverse processes including cell growth and proliferation, angiogenesis, autophagy, and metabolism. Although sirolimus (rapamycin), the oldest inhibitor of mTOR, was discovered more than 30 years ago, renewed interest in this pathway is evident by the numerous rapalogs recently developed. These newer agents borrow from the structure of sirolimus and, although there are some pharmacokinetic differences, they appear to differ little in terms of pharmacodynamic effects and overall tolerability. Given the multitude of potential applications for this class of agents and the decrease in cost that can be expected upon the expiration of sirolimus patents, renewed focus on this agent is warranted.


Blood | 2011

High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia

Wing Leung; Dario Campana; Jie Yang; Deqing Pei; Elaine Coustan-Smith; Kwan Gan; Jeffrey E. Rubnitz; John T. Sandlund; Raul C. Ribeiro; Ashok Srinivasan; Christine Hartford; Brandon M. Triplett; Mari Hashitate Dallas; Asha Pillai; Rupert Handgretinger; Joseph H. Laver; Ching-Hon Pui

We evaluated 190 children with very high-risk leukemia, who underwent allogeneic hematopoietic cell transplantation in 2 sequential treatment eras, to determine whether those treated with contemporary protocols had a high risk of relapse or toxic death, and whether non-HLA-identical transplantations yielded poor outcomes. For the recent cohorts, the 5-year overall survival rates were 65% for the 37 patients with acute lymphoblastic leukemia and 74% for the 46 with acute myeloid leukemia; these rates compared favorably with those of earlier cohorts (28%, n = 57; and 34%, n = 50, respectively). Improvement in the recent cohorts was observed regardless of donor type (sibling, 70% vs 24%; unrelated, 61% vs 37%; and haploidentical, 88% vs 19%), attributable to less infection (hazard ratio [HR] = 0.12; P = .005), regimen-related toxicity (HR = 0.25; P = .002), and leukemia-related death (HR = 0.40; P = .01). Survival probability was dependent on leukemia status (first remission vs more advanced disease; HR = 0.63; P = .03) or minimal residual disease (positive vs negative; HR = 2.10; P = .01) at the time of transplantation. We concluded that transplantation has improved over time and should be considered for all children with very high-risk leukemia, regardless of matched donor availability.


Blood | 2012

Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia.

Wing Leung; Ching-Hon Pui; Elaine Coustan-Smith; Jie Yang; Deqing Pei; Kwan Gan; Ashok Srinivasan; Christine Hartford; Brandon M. Triplett; Mari Hashitate Dallas; Asha Pillai; David Shook; Jeffrey E. Rubnitz; John T. Sandlund; Sima Jeha; Hiroto Inaba; Raul C. Ribeiro; Rupert Handgretinger; Joseph H. Laver; Dario Campana

In patients with acute leukemia, detection of minimal residual disease (MRD) before allogeneic hematopoietic cell transplantation (HCT) correlates with risk of relapse. However, the level of MRD that is most likely to preclude cure by HCT is unclear, and the benefit of further chemotherapy to reduce MRD before HCT is unknown. In 122 children with very-high-risk acute lymphoblastic leukemia (ALL; n = 64) or acute myeloid leukemia (AML, n = 58), higher MRD levels at the time of HCT predicted a poorer survival after HCT (P = .0019); MRD was an independent prognostic factor in a multivariate analysis (P = .0035). However, the increase in risk of death associated with a similar increment of MRD was greater in ALL than in AML, suggesting that a pretransplantation reduction of leukemia burden would have a higher impact in ALL. At any given MRD level, survival rates were higher for patients treated in recent protocols: the 5-year overall survival for patients with ALL was 49% if MRD was detectable and 88% if it was not and the corresponding rates for patients with AML were 67% and 80%, respectively. Although MRD before HCT is a strong prognostic factor, its impact has diminished and should not be regarded as a contraindication for HCT.


Clinical Cancer Research | 2009

A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies.

Christine Hartford; Apurva A. Desai; Linda Janisch; Theodore Karrison; Victor M. Rivera; Lori Berk; John W. Loewy; Hedy L. Kindler; Walter M. Stadler; H. L. Knowles; Camille L. Bedrosian; Mark J. Ratain

Purpose: This was a phase I trial to determine the maximum tolerated dose and toxicity of deforolimus (AP23573, MK-8669), an inhibitor of mammalian target of rapamycin (mTOR). The pharmacokinetics, pharmacodynamics, and antineoplastic effects were also studied. Experimental Design: Deforolimus was administered intravenously over 30 min every 7 days according to a flat dosing schedule. Dose was escalated according to an accelerated titration design. Patients remained on study until disease progression as long as they tolerated the drug without significant toxicities. Results: Forty-six patients were enrolled on the study. Common side effects included fatigue, anorexia, and mucositis. The maximum tolerated dose was 75 mg and mucositis was the dose-limiting toxicity. Similar to other mTOR inhibitors, deforolimus exhibited nonlinear pharmacokinetics and a prolonged half-life. Among 34 patients evaluable for response, 1 patient had a partial response, 21 patients had stable disease, and 12 had progressed. Percent change in tumor size was significantly associated with AUC (P = 0.015). A significant association was also detected for maximum change in cholesterol within the first two cycles of therapy and change in tumor size (r = −0.38; P = 0.029). Conclusions: Deforolimus was well tolerated on the schedule tested in this trial with toxicity and pharmacokinetic profiles that were similar to that of other mTOR inhibitors. Additional phase II studies are needed to determine if deforolimus is superior to other mTOR inhibitors in terms of efficacy. The change in serum cholesterol as a potential biomarker of activity should be studied further.


Blood | 2009

Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity

Christine Hartford; Shiwei Duan; Shannon M. Delaney; Shuangli Mi; Emily O. Kistner; Jatinder K. Lamba; R. Stephanie Huang; M. Eileen Dolan

Cytarabine arabinoside (ara-C) is an antimetabolite used to treat hematologic malignancies. Resistance is a common reason for treatment failure with adverse side effects contributing to morbidity and mortality. Identification of genetic factors important in susceptibility to ara-C cytotoxicity may allow for individualization of treatment. We used an unbiased whole-genome approach using lymphoblastoid cell lines derived from persons of European (CEU) or African (YRI) ancestry to identify these genetic factors. We interrogated more than 2 million single nucleotide polymorphisms (SNPs) for association with susceptibility to ara-C and narrowed our focus by concentrating on SNPs that affected gene expression. We identified a unique pharmacogenetic signature consisting of 4 SNPs explaining 51% of the variability in sensitivity to ara-C among the CEU and 5 SNPs explaining 58% of the variation among the YRI. Population-specific signatures were secondary to either (1) polymorphic SNPs in one population but monomorphic in the other, or (2) significant associations of SNPs with cytotoxicity or gene expression in one population but not the other. We validated the gene expression-cytotoxicity relationship for a subset of genes in a separate group of lymphoblastoid cell lines. These unique genetic signatures comprise novel genes that can now be studied further in functional studies.


Molecular Cancer Therapeutics | 2008

Genetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans

R. Stephanie Huang; Shiwei Duan; Emily O. Kistner; Christine Hartford; M. Eileen Dolan

To gain a better understanding of the genetic variants associated with carboplatin-induced cytotoxicity in individuals of African descent, we present a step-wise approach integrating genotypes, gene expression, and sensitivity of HapMap cell lines to carboplatin. Cell lines derived from 30 trios of African descent (YRI) were used to develop a preclinical model to identify genetic variants and gene expression that contribute to carboplatin-induced cytotoxicity. Cytotoxicity was determined as cell growth inhibition at increasing concentrations of carboplatin for 72 h. Gene expression of 89 HapMap YRI cell lines was determined using the Affymetrix GeneChip Human Exon 1.0 ST Array. Single nucleotide polymorphism genotype and the percent survival at different treatment concentrations along with carboplatin IC50 were linked through whole genome association. A second association test was done between single nucleotide polymorphism genotype and gene expression, and linear regression was then used to capture those genes whose expression correlated to drug sensitivity phenotypes. This approach allows us to identify genetic variants that significantly associate with sensitivity to the cytotoxic effects of carboplatin through their effect on gene expression. We found a gene (GPC5) whose expression is important in all carboplatin treatment concentrations as well as many genes unique to either low (e.g., MAPK1) or high (e.g., BRAF, MYC, and BCL2L1) concentrations of drug. Our whole genome approach enables us to evaluate the contribution of genetic and gene expression variation to a wide range of cellular phenotypes. The identification of concentration specific genetic signatures allows for potential integration of pharmacokinetics, pharmacodynamics, and pharmacogenetics in tailoring chemotherapy. [Mol Cancer Ther 2008;7(9):3038–46]


PLOS Genetics | 2015

Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia

Sabine Topka; Joseph Vijai; Michael F. Walsh; Lauren Jacobs; Ann Maria; Danylo Villano; Pragna Gaddam; Gang Wu; Rose B. McGee; Emily Quinn; Hiroto Inaba; Christine Hartford; Ching-Hon Pui; Alberto S. Pappo; Michael Edmonson; Michael Zhang; Polina Stepensky; Peter G. Steinherz; Kasmintan A. Schrader; Anne Lincoln; James B. Bussel; Steve M. Lipkin; Yehuda Goldgur; Mira Harit; Zsofia K. Stadler; Charles G. Mullighan; Michael Weintraub; Akiko Shimamura; Jinghui Zhang; James R. Downing

Somatic mutations affecting ETV6 often occur in acute lymphoblastic leukemia (ALL), the most common childhood malignancy. The genetic factors that predispose to ALL remain poorly understood. Here we identify a novel germline ETV6 p. L349P mutation in a kindred affected by thrombocytopenia and ALL. A second ETV6 p. N385fs mutation was identified in an unrelated kindred characterized by thrombocytopenia, ALL and secondary myelodysplasia/acute myeloid leukemia. Leukemic cells from the proband in the second kindred showed deletion of wild type ETV6 with retention of the ETV6 p. N385fs. Enforced expression of the ETV6 mutants revealed normal transcript and protein levels, but impaired nuclear localization. Accordingly, these mutants exhibited significantly reduced ability to regulate the transcription of ETV6 target genes. Our findings highlight a novel role for ETV6 in leukemia predisposition.


Journal of Clinical Oncology | 2012

Longitudinal Changes in Body Mass and Composition in Survivors of Childhood Hematologic Malignancies After Allogeneic Hematopoietic Stem-Cell Transplantation

Hiroto Inaba; Jie Yang; Sue C. Kaste; Christine Hartford; Megan S Motosue; Wassim Chemaitilly; Brandon Triplett; David Shook; Ching-Hon Pui; Wing Leung

PURPOSE To measure longitudinal changes in body mass and composition in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem-cell transplantation (HSCT). PATIENTS AND METHODS Body mass index (BMI) was analyzed in 179 survivors by category (underweight, healthy-weight, overweight, and obese) and by z score. Fat and lean body mass measured by dual-energy x-ray absorptiometry was analyzed as z scores. RESULTS Over a median 6.6 years of follow-up, BMI z scores diminished significantly (0.32 pre-HSCT v -0.60 at 10 years post-HSCT; P < .001). Mean z scores for fat mass stayed within population norms, but those for lean mass remained below normal levels and diminished significantly over time (P = .018). Pre-HSCT BMI category and/or z score were strongly predictive of post-HSCT BMI (P < .001) and of fat and lean mass z scores (both P < .001). Survivors with extensive chronic graft-versus-host disease were more likely than others to have low BMI (P = .004) and low lean mass (P < .001) post-HSCT. Older age at HSCT (P = .015) and T-cell-depleted graft (P = .018) were predictive of lower post-HSCT BMI. Female patients had higher body fat (P = .002) and lower lean mass (P = .013) z scores than male patients, and black patients had higher fat mass z scores than white patients (P = .026). CONCLUSION BMI declines significantly after allogeneic HSCT for childhood hematologic malignancies, reflecting primarily a substantial decrease in lean mass but not fat mass. Monitoring and preservation of BMI and lean mass are vital, especially in those with the identified risk factors.


Blood | 2013

Comprehensive genetic analysis of cytarabine sensitivity in a cell-based model identifies polymorphisms associated with outcome in AML patients.

Eric R. Gamazon; Jatinder K. Lamba; Stanley Pounds; Amy L. Stark; Heather E. Wheeler; Xueyuan Cao; Hae K. Im; Amit Kumar Mitra; Jeffrey E. Rubnitz; Raul C. Ribeiro; Susana C. Raimondi; Dario Campana; Kristine R. Crews; Shan S. Wong; Marleen Welsh; Imge Hulur; Lidija K. Gorsic; Christine Hartford; Wei Zhang; Nancy J. Cox; M. Eileen Dolan

A whole-genome approach was used to investigate the genetic determinants of cytarabine-induced cytotoxicity. We performed a meta-analysis of genome-wide association studies involving 523 lymphoblastoid cell lines (LCLs) from individuals of European, African, Asian, and African American ancestry. Several of the highest-ranked single-nucleotide polymorphisms (SNPs) were within the mutated in colorectal cancers (MCC) gene. MCC expression was induced by cytarabine treatment from 1.7- to 26.6-fold in LCLs. A total of 33 SNPs ranked at the top of the meta-analysis (P < 10(-5)) were successfully tested in a clinical trial of patients randomized to receive low-dose or high-dose cytarabine plus daunorubicin and etoposide; of these, 18 showed association (P < .05) with either cytarabine 50% inhibitory concentration in leukemia cells or clinical response parameters (minimal residual disease, overall survival (OS), and treatment-related mortality). This count (n = 18) was significantly greater than expected by chance (P = .016). For rs1203633, LCLs with AA genotype were more sensitive to cytarabine-induced cytotoxicity (P = 1.31 × 10(-6)) and AA (vs GA or GG) genotype was associated with poorer OS (P = .015), likely as a result of greater treatment-related mortality (P = .0037) in patients with acute myeloid leukemia (AML). This multicenter AML02 study trial was registered at www.clinicaltrials.gov as #NCT00136084.


Clinical Cancer Research | 2012

Phase I Studies of Sirolimus Alone or in Combination with Pharmacokinetic Modulators in Advanced Cancer Patients

Ezra E.W. Cohen; Kehua Wu; Christine Hartford; Masha Kocherginsky; Kimberly Napoli Eaton; Yuanyuan Zha; Anitha Nallari; Michael L. Maitland; Kammi Fox-Kay; Kristin Moshier; Larry House; Jacqueline Ramírez; Samir D. Undevia; Gini F. Fleming; Thomas F. Gajewski; Mark J. Ratain

Purpose: Sirolimus is the eponymous inhibitor of the mTOR; however, only its analogs have been approved as cancer therapies. Nevertheless, sirolimus is readily available, has been well studied in organ transplant patients, and shows efficacy in several preclinical cancer models. Experimental Design: Three simultaneously conducted phase I studies in advanced cancer patients used an adaptive escalation design to find the dose of oral, weekly sirolimus alone or in combination with either ketoconazole or grapefruit juice that achieves similar blood concentrations as its intravenously administered and approved prodrug, temsirolimus. In addition, the effect of sirolimus on inhibition of p70S6 kinase phosphorylation in peripheral T cells was determined. Results: Collectively, the three studies enrolled 138 subjects. The most commonly observed toxicities were hyperglycemia, hyperlipidemia, and lymphopenia in 52%, 43%, and 41% of subjects, respectively. The target sirolimus area under the concentration curve (AUC) of 3,810 ng-h/mL was achieved at sirolimus doses of 90, 16, and 25 mg in the sirolimus alone, sirolimus plus ketoconazole, and sirolimus plus grapefruit juice studies, respectively. Ketoconazole and grapefruit juice increased sirolimus AUC approximately 500% and 350%, respectively. Inhibition of p70 S6 kinase phosphorylation was observed at all doses of sirolimus and correlated with blood concentrations. One partial response was observed in a patient with epithelioid hemangioendothelioma. Conclusion: Sirolimus can be feasibly administered orally, once weekly with a similar toxicity and pharmacokinetic profile compared with other mTOR inhibitors and warrants further evaluation in studies of its comparative effectiveness relative to recently approved sirolimus analogs. Clin Cancer Res; 18(17); 4785–93. ©2012 AACR.

Collaboration


Dive into the Christine Hartford's collaboration.

Top Co-Authors

Avatar

Wing Leung

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandon M. Triplett

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ching-Hon Pui

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Mari Hashitate Dallas

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David Shook

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Hiroto Inaba

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jie Yang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Asha Pillai

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge