Christine Hartmann
Research Institute of Molecular Pathology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Hartmann.
Nature Cell Biology | 2011
Natalia Lyashenko; Markus Winter; Domenico Migliorini; Travis L. Biechele; Randall T. Moon; Christine Hartmann
Canonical Wnt signalling has been implicated in mouse and human embryonic stem cell (ESC) maintenance; however, its requirement is controversial. β-catenin is the key component in this highly conserved Wnt pathway, acting as a transcriptional transactivator. However, β-catenin has additional roles at the plasma membrane regulating cell–cell adhesion, complicating the analyses of cells/tissues lacking β-catenin. We report here the generation of a Ctnnb1 (β-catenin)-deficient mouse ESC (mESC) line and show that self-renewal is maintained in the absence of β-catenin. Cell adhesion is partially rescued by plakoglobin upregulation, but fails to be maintained during differentiation. When differentiated as aggregates, wild-type mESCs form descendants of all three germ layers, whereas mesendodermal germ layer formation and neuronal differentiation are defective in Ctnnb1-deficient mESCs. A Tcf/Lef-signalling-defective β-catenin variant, which re-establishes cadherin-mediated cell adhesion, rescues definitive endoderm and neuroepithelial formation, indicating that the β-catenin cell-adhesion function is more important than its signalling function for these processes.
Development | 2006
Theo P. Hill; Makoto M. Taketo; Walter Birchmeier; Christine Hartmann
Recently canonical Wnt signaling in the ectoderm has been shown to be required for maintenance of the apical ectodermal ridge (AER) and for dorsoventral signaling. Using conditional gain- and loss-of-functionβ -catenin alleles, we have studied the role of mesenchymal β-catenin activity during limb development. Here, we show that loss of β-catenin results in limb truncations due to a defect in AER maintenance. Stabilization of β-catenin also results in truncated limbs, caused by a premature regression of the AER. Concomitantly, in these limbs, the expression of Bmp2, Bmp4 and Bmp7, and of the Bmp target genes Msx1, Msx2 and gremlin, is expanded in the mesenchyme. Furthermore, we found that the expression of Lmx1b, a gene exclusively expressed in the dorsal limb mesenchyme and involved in dorsoventral patterning, is reduced upon loss of β-catenin activity and is expanded ventrally in gain-of-function limbs. However, the known ectodermal regulators Wnt7a and engrailed 1 are expressed normally. This suggests that Lmx1b is also regulated, in part, by a β-catenin-mediated Wnt signal, independent of the non-canoncial Wnt7a signaling pathway. In addition, loss of β-catenin results in a severe agenesis of the scapula. Concurrently, the expression of two genes, Pax1 and Emx2, which have been implicated in scapula development, is lost in β-catenin loss-of-function limbs; however, only Emx2 is upregulated in gain-of-function limbs. Mesenchymal β-catenin activity is therefore required for AER maintenance, and for normal expression of Lmx1b and Emx2.
Journal of Cell Science | 2009
Cordula Surmann-Schmitt; Nathalie Widmann; Uwe H. Dietz; Bernhard Saeger; Nicole Eitzinger; Yukio Nakamura; Marianne Rattel; Richard Latham; Christine Hartmann; Helga von der Mark; Georg Schett; Klaus von der Mark; Michael Stock
Wnt factors are involved in the regulation of all steps of cartilage development. The activity of Wnt factors is generally regulated at the extracellular level by factors like the Dkk family, sFRPs, Cerberus and Wnt inhibitory factor 1 (Wif-1). Here we report that Wif-1 is highly expressed at cartilage-mesenchyme interfaces of the early developing skeleton. In fetal and postnatal skeletal development, Wif-1 is expressed in a sharply restricted zone in the upper hyaline layer of epiphyseal and articular cartilage and in trabecular bone. Coimmunoprecipitation and pull-down assays using recombinant Wif-1 and Wnt factors show specific binding of Wif-1 to Wnt3a, Wnt4, Wnt5a, Wnt7a, Wnt9a and Wnt11. Moreover, Wif-1 was able to block Wnt3a-mediated activation of the canonical Wnt signalling pathway. Consequently, Wif-1 impaired growth of mesenchymal precursor cells and neutralised Wnt3a-mediated inhibition of chondrogenesis in micromass cultures of embryonic chick limb-bud cells. These results identify Wif-1 as a novel extracellular Wnt modulator in cartilage biology.
Current Opinion in Genetics & Development | 2009
Christine Hartmann
The formation of the vertebrate skeletal elements relies on the differentiation of the required cell types, chondrocytes and osteoblasts, which are derived from a common mesenchymal precursor. Furthermore it requires coordination between maturation of chondrocytes and osteoblasts to enable proper growth and development of skeletal elements. Over the past years various transcription factors have been identified on the basis of in vivo and in vitro studies that play important roles for skeletal formation being either active in chondrocytes or osteoblasts or even in both cell types. In this article their mode of action in skeletal development and how their activity is controlled are reviewed.
Developmental Biology | 2010
Sayumi Fujimori; Hermann Novak; Martina Weissenböck; Maria Jussila; Alexandre Gonçalves; Rolf Zeller; Jenna L. Galloway; Irma Thesleff; Christine Hartmann
Loss- and gain-of function approaches modulating canonical Wnt/β-catenin activity have established a role for the Wnt/β-catenin pathway during tooth development. Here we show that Wnt/β-catenin signaling is required in the dental mesenchyme for normal incisor development, as locally restricted genetic inactivation of β-catenin results in a splitting of the incisor placode, giving rise to two incisors. Molecularly this is first associated with down-regulation of Bmp4 and subsequent splitting of the Shh domain at a subsequent stage. The latter phenotype can be mimicked by ectopic application of the BMP antagonist Noggin. Conditional genetic inactivation of Bmp4 in the mesenchyme reveals that mesenchymal BMP4 activity is required for maintenance of Shh expression in the dental ectoderm. Taken together our results indicate that β-catenin together with Lef1 and Tcf1 are required to activate Bmp4 expression in order to maintain Shh expression in the dental ectoderm. This provides a mechanism whereby the number of incisors arising from one placode can be varied through local alterations of a mesenchymal signaling circuit involving β-catenin, Lef1, Tcf1 and Bmp4.
Trends in Cell Biology | 2012
Jason Wray; Christine Hartmann
Embryonic stem cells (ESCs) - undifferentiated cells originating from preimplantation stage embryos - have prolonged self-renewal capacity and are pluripotent. Activation of the canonical Wnt pathway is implicated in maintenance of and exit from the pluripotent state. Recent findings demonstrate that the essential mediator of canonical Wnt signaling, β-catenin, is dispensable for ESC maintenance; however, its activation inhibits differentiation through derepression of T cell factor 3 (Tcf3)-bound genes. Wnt agonists are useful in deriving ESCs from recalcitrant mouse strains and the rat and in nuclear reprogramming of somatic stem cells. We discuss recent advances in our understanding of the role of canonical Wnt signaling in the regulation of ESC self-renewal and how its manipulation can improve pluripotent ESC derivation and maintenance.
Journal of Bone and Mineral Research | 2004
Birgit Görtz; Silvia Hayer; Kurt Redlich; Jochen Zwerina; Makyieh Tohidast-Akrad; Birgit Tuerk; Christine Hartmann; George Kollias; Günter Steiner; Josef S Smolen; Georg Schett
Arthritis can destroy the cortical bone barrier and expose bone marrow to synovial tissue. This study examines bone marrow changes in arthritis and its effects on cortical bone remodeling. Bone marrow next to arthritic lesions exhibits B‐lymphocyte‐rich infiltrates, which express BMPs and stimulate endosteal bone formation. Thus, bone marrow actively participates in the arthritic process.
Biology Open | 2015
Jung Park; Matthias Gebhardt; Svitlana Golovchenko; Francesc Perez-Branguli; Takako Hattori; Christine Hartmann; Xin Zhou; Benoit deCrombrugghe; Michael Stock; Holm Schneider; Klaus von der Mark
According to the general understanding, the chondrocyte lineage terminates with the elimination of late hypertrophic cells by apoptosis in the growth plate. However, recent cell tracking studies have shown that murine hypertrophic chondrocytes can survive beyond “terminal” differentiation and give rise to a progeny of osteoblasts participating in endochondral bone formation. The question how chondrocytes convert into osteoblasts, however, remained open. Following the cell fate of hypertrophic chondrocytes by genetic lineage tracing using BACCol10;Cre induced YFP-reporter gene expression we show that a progeny of Col10Cre-reporter labelled osteoprogenitor cells and osteoblasts appears in the primary spongiosa and participates – depending on the developmental stage – substantially in trabecular, endosteal, and cortical bone formation. YFP+ trabecular and endosteal cells isolated by FACS expressed Col1a1, osteocalcin and runx2, thus confirming their osteogenic phenotype. In searching for transitory cells between hypertrophic chondrocytes and trabecular osteoblasts we identified by confocal microscopy a novel, small YFP+Osx+ cell type with mitotic activity in the lower hypertrophic zone at the chondro-osseous junction. When isolated from growth plates by fractional enzymatic digestion, these cells termed CDOP (chondrocyte-derived osteoprogenitor) cells expressed bone typical genes and differentiated into osteoblasts in vitro. We propose the Col10Cre-labeled CDOP cells mark the initiation point of a second pathway giving rise to endochondral osteoblasts, alternative to perichondrium derived osteoprogenitor cells. These findings add to current concepts of chondrocyte-osteocyte lineages and give new insight into the complex cartilage-bone transition process in the growth plate.
Molecular and Cellular Biology | 2014
Michiru Nishita; Sen Qiao; Mari Miyamoto; Yuka Okinaka; Makiko Yamada; Ryuju Hashimoto; Kazumoto Iijima; Hiroki Otani; Christine Hartmann; Ryuichi Nishinakamura; Yasuhiro Minami
ABSTRACT Development of the metanephric kidney begins with the induction of a single ureteric bud (UB) on the caudal Wolffian duct (WD) in response to GDNF (glial cell line-derived neurotrophic factor) produced by the adjacent metanephric mesenchyme (MM). Mutual interaction between the UB and MM maintains expression of GDNF in the MM, thereby supporting further outgrowth and branching morphogenesis of the UB, while the MM also grows and aggregates around the branched tips of the UB. Ror2, a member of the Ror family of receptor tyrosine kinases, has been shown to act as a receptor for Wnt5a to mediate noncanonical Wnt signaling. We show that Ror2 is predominantly expressed in the MM during UB induction and that Ror2- and Wnt5a-deficient mice exhibit duplicated ureters and kidneys due to ectopic UB induction. During initial UB formation, these mutant embryos show dysregulated positioning of the MM, resulting in spatiotemporally aberrant interaction between the MM and WD, which provides the WD with inappropriate GDNF signaling. Furthermore, the numbers of proliferating cells in the mutant MM are markedly reduced compared to the wild-type MM. These results indicate an important role of Wnt5a-Ror2 signaling in morphogenesis of the MM to ensure proper epithelial tubular formation of the UB required for kidney development.
Developmental Dynamics | 2010
Natalia Lyashenko; Martina Weissenböck; Amnon Sharir; Reinhold G. Erben; Yasuhiro Minami; Christine Hartmann
Ror1 is a member of the Ror‐family receptor tyrosine kinases. Ror1 is broadly expressed in various tissues and organs during mouse embryonic development. However, so far little is known about its function. The closely related family member Ror2 was shown to play a crucial role in skeletogenesis and has been shown to act as a co‐receptor for Wnt5a mediating non‐canonical Wnt‐signaling. Previously, it has been shown that during embryonic development Ror1 acts in part redundantly with Ror2 in the skeletal and cardiovascular systems. In this study, we report that loss of the orphan receptor Ror1 results in a variety of phenotypic defects within the skeletal and urogenital systems and that Ror1 mutant mice display a postnatal growth retardation phenotype. Developmental Dynamics 239:2266–2277, 2010.