Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Janzowski is active.

Publication


Featured researches published by Christine Janzowski.


Food and Chemical Toxicology | 2000

5-Hydroxymethylfurfural : assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione

Christine Janzowski; V Glaab; E Samimi; J Schlatter; Gerhard Eisenbrand

5-(hydroxymethyl)-2-furfural (HMF), a common product of the Maillard reaction, occurs in many foods in high concentrations, sometimes exceeding 1 g/kg (in certain dried fruits and caramel products). The toxicological relevance of this exposure has not yet been clarified. Induction of aberrant colonic crypt foci had been reported for HMF, in vitro studies on genotoxicity/mutagenicity have given controversial results. To elucidate the toxic potential of HMF, cytotoxicity (trypan blue exclusion), growth inhibition (SRB assay), mutagenicity (HPRT assay), DNA damage (single-cell gel electrophoresis) and depletion of cellular glutathione were investigated in mammalian cells. Genotoxicity (SOS repair) was monitored in Salmonella typhimurium (umu assay). HMF induced moderate cytotoxicity in V79 cells (LC(50): 115 mM, 1 hr incubation) and in Caco-2 cells (LC(50): 118 mM, 1 hr incubation). Growth inhibition was monitored following 24 hr of incubation (V79, IC(50): 6.4 mM). DNA damage was detectable neither in these cell lines nor in primary rat hepatocytes up to the cytotoxic threshold concentration (75% absolute viability). Likewise, in primary human colon cells, obtained from biopsy material, DNA damage was not measurable. At 120 mM, already exhibiting some reduction in cell viability, HMF was weakly mutagenic at the hprt-locus in V79 cells (mutants/10(6) cells: HMF 120 mM: 16 vs control: 3). Intracelluar glutathione was depleted by HMF (>/=50 mM) in V79 cells, in the human colon adenocarcinoma cell line Caco-2 and in primary rat hepatocytes down to approximately 30% of control (120 mM). Genotoxicity was observed with HMF in the umu assay without external activation (16 mM: 185 rel. umu units, %, P<0.001). The genotoxic potential was not altered by addition of rat liver microsomes. By comparison, the natural flavour constituent (E)-2-hexenal (HEX) was already cytotoxic, mutagenic and depleted glutathione at about 1000-fold lower concentrations. It induced DNA damage in mammalian cells (200-400 microM). These results suggest that HMF does not pose a serious health risk, even though the highest concentrations in specific foods approach the biologically effective concentration range in cell systems.


Cancer Epidemiology, Biomarkers & Prevention | 2008

Anthocyanin/Polyphenolic–Rich Fruit Juice Reduces Oxidative Cell Damage in an Intervention Study with Patients on Hemodialysis

Thomas Spormann; Franz Werner Albert; Thomas Rath; Helmut Dietrich; Frank Will; Jean-Pierre Stockis; Gerhard Eisenbrand; Christine Janzowski

Hemodialysis patients face an elevated risk of cancer, arteriosclerosis, and other diseases, ascribed in part to increased oxidative stress. Red fruit juice with high anthocyanin/polyphenol content had been shown to reduce oxidative damage in healthy probands. To test its preventive potential in hemodialysis patients, 21 subjects in a pilot intervention study consumed 200 mL/day of red fruit juice (3-week run-in; 4-week juice uptake; 3-week wash-out). Weekly blood sampling was done to monitor DNA damage (comet assay ± formamidopyrimidine-DNA glycosylase enzyme), glutathione, malondialdehyde, protein carbonyls, trolox equivalent antioxidant capacity, triglycerides, and DNA binding capacity of the transcription factor nuclear factor-κB. Results show a significant decrease of DNA oxidation damage (P < 0.0001), protein and lipid peroxidation (P < 0.0001 and P < 0.001, respectively), and nuclear factor-κB binding activity (P < 0.01), and an increase of glutathione level and status (both P < 0.0001) during juice uptake. We attribute this reduction in oxidative (cell) damage in hemodialysis patients to the especially high anthocyanin/polyphenol content of the juice. This provides promising perspectives into the prevention of chronic diseases such as cancer and cardiovascular disease in population subgroups exposed to enhanced oxidative stress like hemodialysis patients. (Cancer Epidemiol Biomarkers Prev 2008;17(12):3372–80)


Molecular Nutrition & Food Research | 2011

Antioxidant‐rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: Results from an intervention study

Tamara Bakuradze; Nadine Boehm; Christine Janzowski; Roman Lang; Thomas Hofmann; Jean-Pierre Stockis; Franz Werner Albert; Herbert Stiebitz; Gerhard Bytof; Ingo Lantz; Matthias Baum; Gerhard Eisenbrand

Epidemiological and experimental evidence increasingly suggests coffee consumption to be correlated to prevention or delay of degenerative diseases connected with oxidative cellular stress. In an intervention study comprising 33 healthy volunteers, we examined DNA-protective and antioxidative effects exerted in vivo by daily ingestion of 750 mL of freshly brewed coffee rich in both green coffee bean constituents as well as roast products. The study design encompassed an initial 4 wk of wash-out, followed by 4 wk of coffee intake and 4 wk of second wash-out. At the start and after each study phase blood samples were taken to monitor biomarkers of oxidative stress response. In addition, body weight/composition and intake of energy/nutrients were recorded. In the coffee ingestion period, the primary endpoint, oxidative DNA damage as measured by the Comet assay (± FPG), was markedly reduced (p<0.001). Glutathione level (p<0.05) and GSR-activity (p<0.01) were elevated. Body weight (p<0.01)/body fat (p<0.05) and energy (p<0.001)/nutrient (p<0.001-0.05) intake were reduced. Our results allow to conclude that daily consumption of 3-4 cups of brew from a special Arabica coffee exerts health beneficial effects, as evidenced by reduced oxidative damage, body fat mass and energy/nutrient uptake.


Free Radical Research | 2004

Effects of Hemodialysis, Dialyser Type and Iron Infusion on Oxidative Stress in Uremic Patients

Christoph Müller; Gerhard Eisenbrand; Martina Gradinger; Thomas Rath; Franz Werner Albert; Jörg Vienken; Rajinder Singh; Peter B. Farmer; Jean-Pierre Stockis; Christine Janzowski

Uremic patients undergoing hemodialysis (HD) are considered to face an elevated risk for atherosclerosis and cancer. This has been attributed in part to an increased oxidative stress. In this pilot study, oxidative cell damage in blood of HD-patients was compared to those of controls: total DNA damage (basic and specific oxidative DNA damage), modulation of glutathione levels (total and oxidized glutathione) and of lipid peroxidation were monitored via the Comet assay (with and without FPG), a kinetic photometric assay and HPLC quantification of plasma malondialdehyde (MDA), respectively. In some samples, leukocytes were analysed for malondialdehyde–deoxyguanosine-adducts (M1dG) with an immunoslot blot technique. HD-patients (n=21) showed a significant increase of total DNA damage (p<10-12), compared to controls (n=12). In a subset of patients and controls, GSSG levels and M1dG, however, only increased slightly, while tGSH and MDA levels did not differ. The influence of different low flux HD-membranes was tested in a pilot study with nine patients consecutively dialysed on three membrane types for four weeks each. In addition to the individual disposition of the patient, the dialyser membrane had a significant impact on oxidative stress. Total DNA damage was found to be almost identical for polysulfone and vitamin E coated cellulosic membranes, whereas a slight, but significant increase was observed with cellulose-diacetate (p<0.001). In patients receiving iron infusion during HD, MDA-formation (n=11) and total DNA damage (n=10) were additionally increased (p<0.005). Our results show an increased oxidative damage in HD-patients, compared to healthy volunteers. Significant influences were found for the dialyser membrane type and iron infusion.


Molecular Nutrition & Food Research | 2011

Colonic availability of polyphenols and D-(-)-quinic acid after apple smoothie consumption.

Stephanie Hagl; Hannah Deusser; Buelent Soyalan; Christine Janzowski; Frank Will; Helmut Dietrich; Franz Werner Albert; Simone Rohner; Elke Richling

SCOPE The aim of this study was to determine the amounts of polyphenols and D-(-)-quinic acid reaching the ileostomy bags of probands (and thus the colon in healthy humans) after ingestion of apple smoothie, a beverage containing 60% cloudy apple juice and 40% apple puree. METHODS AND RESULTS Ten healthy ileostomy subjects each ingested 0.7 L of apple smoothie (a bottle). Their ileostomy bags were collected directly before and 1, 2, 4, 6 and 8 h after smoothie consumption, and the polyphenol and D-(-)-quinic acid contents of the ileostomy fluids were examined using HPLC-DAD and HPLC-MS/MS. The total polyphenol and D-(-)-quinic acid content of the apple smoothie was determined to be 1955.6±124.6 mg/0.7 L, which is very high compared to cloudy apple juices. The most abundant substances found in the ileostomy bags were oligomeric procyanidins (705.6±197.9 mg), D-(-)-quinic acid (363.4±235.5 mg) and 5-caffeoylquinic acid (76.7±26.8 mg). Overall recovery of ingested polyphenols and D-(-)-quinic acid in the ileostomy bags was 63.3±16.1%. CONCLUSIONS The amounts of polyphenol and D-(-)-quinic acids reaching the ileostomy bags are considerably higher after apple smoothie consumption than after the consumption of cloudy apple juice or cider. These results suggest that the food matrix might affect the colonic availability of polyphenols, and apple smoothies could be more effective in the prevention of chronic colon diseases than both cloudy apple juice and apple cider.


Molecular Nutrition & Food Research | 2010

Antioxidant effectiveness of coffee extracts and selected constituents in cell-free systems and human colon cell lines.

Tamara Bakuradze; Roman Lang; Thomas Hofmann; Herbert Stiebitz; Gerhard Bytof; Ingo Lantz; Matthias Baum; Gerhard Eisenbrand; Christine Janzowski

SCOPE Epidemiological studies suggest that coffee can reduce the risk of degenerative diseases such as diabetes type 2, cardiovascular disease and cancer. These beneficial effects have partly been attributed to the antioxidant activity of coffee. We determined composition and antioxidant potential of differentially roasted coffee extracts and investigated the impact of selected original constituents and roast products. METHODS AND RESULTS Parameters studied were direct antioxidant activity (trolox equivalent antioxidant capacity/oxygen radical absorbing capacity), cellular reactive oxygen species (ROS) level, DNA damage and protein expression of NAD(P)H: quinone oxidoreductase, γ-glutamylcysteine ligase and glutathione reductase in HT-29/Caco-2 cells at 24-h incubation. All extracts showed distinct direct antioxidant activity: medium roasts>light roast AB1 (caffeoylquinic acid (CQA)-rich Arabica Brazil extract); dark roast AB2 (N-methylpyridinium (NMP)-rich Arabica Brazil extract), and diminished t-butylhydroperoxide-induced ROS level in HT-29 cells (AB2>medium roasts>AB1). NAD(P)H:quinone oxidoreductase 1 expression and γ-glutamylcysteine ligase expression were distinctly induced by AB1 and 5-CQA, but not by AB2 and NMP. 5-CQA and caffeic acid exhibited highest trolox equivalent antioxidant capacity/oxygen radical absorbing capacity values (5-CQA: 1.3/3.5 mM and caffeic acid: 1.3/3.9 mM trolox); ROS level was distinctly diminished by 5-CQA (≥3 μM), catechol (30 μM) and trigonelline (≥30 μM), whereas menadione-induced DNA damage in Caco-2 cells was reduced by NMP compounds (1-30 μM). CONCLUSION The results emphasize that both original constituents and roast products contribute to the cellular antioxidant effectiveness of coffee.


Molecular Nutrition & Food Research | 2009

Formation of hydrogen peroxide in cell culture media by apple polyphenols and its effect on antioxidant biomarkers in the colon cell line HT-29.

Phillip Bellion; Melanie Olk; Frank Will; Helmut Dietrich; Matthias Baum; Gerhard Eisenbrand; Christine Janzowski

Beneficial health effects of diets containing fruits have partly been attributed to polyphenols which display a spectrum of bioactive effects, including antioxidant activity. However, polyphenols can also exert prooxidative effects in vitro. In this study, polyphenol-mediated hydrogen peroxide (H(2)O(2)) formation was determined after incubation of apple juice extracts (AEs) and polyphenols in cell culture media. Effects of extracellular H(2)O(2 )on total glutathione (tGSH; =GSH + GSSG) and cellular reactive oxygen species (ROS) level of HT-29 cells were studied by coincubation +/- catalase (CAT). AEs ( > or =30 microg/mL) significantly generated H(2)O(2) in DMEM, depending on their composition. Similarly, H(2)O(2) was measured for individual apple polyphenols/degradation products (phenolic acids > epicatechin, flavonols > dihydrochalcones). Highest concentrations were generated by compounds bearing the o-catechol moiety. H(2)O(2) formation was found to be pH dependent; addition of CAT caused a complete decomposition of H(2)O(2) whereas superoxide dismutase was less/not effective. At incubation of HT-29 cells with quercetin (1-100 microM), generated H(2)O(2) slightly contributed to antioxidant cell protection by modulation of tGSH- and ROS-level. In conclusion, H(2)O(2) generation in vitro by polyphenols has to be taken into consideration when interpreting results of such cell culture experiments. Unphysiologically high polyphenol concentrations, favoring substantial H(2)O(2 )formation, are not expected to be met in vivo, even under conditions of high end nutritional uptake.


Journal of Agricultural and Food Chemistry | 2008

Antioxidant Effectiveness of Phenolic Apple Juice Extracts and Their Gut Fermentation Products in the Human Colon Carcinoma Cell Line Caco-2

Phillip Bellion; Thomas Hofmann; Beatrice L. Pool-Zobel; Frank Will; Helmut Dietrich; Bastian Knaup; Elke Richling; Matthias Baum; Gerhard Eisenbrand; Christine Janzowski

Apples represent a major dietary source of antioxidative polyphenols. Their metabolic conversion by the gut microflora might generate products that protect the intestine against oxidative damage. We studied the antioxidant effectiveness of supernatants of fermented apple juice extracts (F-AEs, 6 and 24 h fermentation) and of selected phenolic degradation products, identified by HPLC-DAD-ESI-MS. Cell free antioxidant capacity of unfermented apple juice extracts (AEs) was decreased after fermentation by 30-50%. In the human colon carcinoma cell line Caco-2, F-AEs (containing <0.5% of original AE-phenolics) decreased the reactive oxygen species (ROS) level more efficiently than the F-blank (fermented without AE) but were less effective than the respective AEs. Similarly, antioxidant effectiveness of individual degradation products was lower compared to respective AE constituents. Glutathione level was slightly increased and oxidative DNA damage slightly decreased by fermented AE03, rich in quercetin glycosides. In conclusion, F-AEs/degradation products exhibit antioxidant activity in colon cells but to a lesser extent than the respective unfermented AEs/constituents.


European Journal of Pharmacology: Environmental Toxicology and Pharmacology | 1995

Stable expression of human cytochrome P450 2E1 in V79 Chinese hamster cells

Wolfgang Schmalix; Robert Landsiedel; Christine Janzowski; Gerhard Eisenbrand; Frank J. Gonzalez; Erik Eliasson; Magnus Ingelman-Sundberg; Monika Perchermeier; Helmut Greim

A V79 Chinese hamster cell line was constructed for stable expression of human cytochrome P450 2E1 (CYP2E1) by integration of a SV40 Early promoter recombinant CYP2E1 cDNA into the chromosomal DNA. The cDNA encoded CYP2E1 was effectively expressed and enzymatically active, as shown by hydroxylation of chlorzoxazone and of p-nitrophenol, at rates of about 70 pmol x mg-1 total protein x min-1. CYP2E1 content and activity was increased upon cultivation in the presence of ethanol indicating a substrate mediated stabilization effect. A similar stabilizing effect was also observed for inhibitors of CYP2E1, e.g. imidazole, 4-methylpyrazole, and isoniazid. The feasibility of the newly established cell line V79MZh2E1 for toxicological studies was shown by CYP2E1-mediated activation of N-nitrosodimethylamine and p-nitrophenol and a dose-dependent cytotoxic and mutagenic effect.


Journal of Agricultural and Food Chemistry | 2010

Polyphenolic Apple Extracts: Effects of Raw Material and Production Method on Antioxidant Effectiveness and Reduction of DNA Damage in Caco-2 Cells

Phillip Bellion; Jasmin Digles; Frank Will; Helmut Dietrich; Matthias Baum; Gerhard Eisenbrand; Christine Janzowski

A diet rich in fruits and vegetables is commonly perceived to be associated with reduced cancer risk, attributed to its high content of polyphenols. As apples represent a major polyphenol source in Western countries, we studied differentially produced extracts (1-100 microg/mL): two from different apple juices (AEs), one from pomace (APE), and one peel extract (PE) on their potential to reduce DNA oxidation damage and induce antioxidant defense in Caco-2 cells. Additionally, we measured direct antioxidant capacity (TEAC/ORAC) of the extracts. Quercetin-rich PE and APE most effectively diminished DNA damage and ROS level after 24 h incubation (PE > APE), whereas the AEs were only moderately effective. GPx activity was diminished for all extracts, with AEs > APE > PE. Direct antioxidant activity decreased in the order AEs > PE > APE, displaying no significant correlation with cellular markers. In conclusion, apple phenolics at low, nutritionally relevant concentrations may protect intestinal cells from ROS-induced DNA damage, mediated by cellular defense mechanisms rather than by antioxidant activity.

Collaboration


Dive into the Christine Janzowski's collaboration.

Top Co-Authors

Avatar

Gerhard Eisenbrand

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Helmut Dietrich

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthias Baum

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Will

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Franz Werner Albert

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Phillip Bellion

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bülent Soyalan

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jean-Pierre Stockis

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Rath

Kaiserslautern University of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Will

Kaiserslautern University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge