Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine K. Schmidt is active.

Publication


Featured researches published by Christine K. Schmidt.


Genes & Development | 2008

Identification of cis-acting sites for condensin loading onto budding yeast chromosomes

Claudio D'ambrosio; Christine K. Schmidt; Yuki Katou; Gavin Kelly; Takehiko Itoh; Katsuhiko Shirahige; Frank Uhlmann

Eukaryotic chromosomes reach their stable rod-shaped appearance in mitosis in a reaction dependent on the evolutionarily conserved condensin complex. Little is known about how and where condensin associates with chromosomes. Here, we analyze condensin binding to budding yeast chromosomes using high-resolution oligonucleotide tiling arrays. Condensin-binding sites coincide with those of the loading factor Scc2/4 of the related cohesin complex. The sites map to tRNA and other genes bound by the RNA polymerase III transcription factor TFIIIC, and ribosomal protein and SNR genes. An ectopic B-box element, recognized by TFIIIC, constitutes a minimal condensin-binding site, and TFIIIC and the Scc2/4 complex promote functional condensin association with chromosomes. A similar pattern of condensin binding is conserved along fission yeast chromosomes. This reveals that TFIIIC-binding sites, including tRNA genes, constitute a hitherto unknown chromosomal feature with important implications for chromosome architecture during both interphase and mitosis.


Nature Structural & Molecular Biology | 2014

Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks

François Aymard; Beatrix Bugler; Christine K. Schmidt; Emmanuelle Guillou; Pierre Caron; Sébastien Briois; Jason S. Iacovoni; Virginie Daburon; Kyle M. Miller; Gaëlle Legube

Although both homologous recombination (HR) and nonhomologous end joining can repair DNA double-strand breaks (DSBs), the mechanisms by which one of these pathways is chosen over the other remain unclear. Here we show that transcriptionally active chromatin is preferentially repaired by HR. Using chromatin immunoprecipitation–sequencing (ChIP-seq) to analyze repair of multiple DSBs induced throughout the human genome, we identify an HR-prone subset of DSBs that recruit the HR protein RAD51, undergo resection and rely on RAD51 for efficient repair. These DSBs are located in actively transcribed genes and are targeted to HR repair via the transcription elongation–associated mark trimethylated histone H3 K36. Concordantly, depletion of SETD2, the main H3 K36 trimethyltransferase, severely impedes HR at such DSBs. Our study thereby demonstrates a primary role in DSB repair of the chromatin context in which a break occurs.


Science | 2013

Spatial dynamics of chromosome translocations in living cells.

Vassilis Roukos; Ty C. Voss; Christine K. Schmidt; Seungtaek Lee; Darawalee Wangsa; Tom Misteli

Chromosome Choreography Chromosome translocations arise through the illegitimate pairing of broken chromosome ends and are commonly found in many cancers. Roukos et al. (p. 660) used ultrahigh-throughput time-lapse imaging on human tissue culture cells containing marked chromosomes to capture very rare translocation events. Double-strand breaks in the DNA underwent an initial “partner search,” with a fraction of the ends moving into spatial proximity to each other, which resulted in persistent pairing and the merging of DNA repair foci. Most paired ends arose from breaks in close proximity, but occasionally translocations formed from more distantly positioned breaks. Proteins of the DNA repair machinery could influence the pairing and/or translocation process. An experimental system allows the visualization of human cell chromosome translocations in real time. Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle–independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.


Genome Biology | 2009

Conserved features of cohesin binding along fission yeast chromosomes.

Christine K. Schmidt; Neil Brookes; Frank Uhlmann

BackgroundCohesin holds sister chromatids together to enable their accurate segregation in mitosis. How, and where, cohesin binds to chromosomes are still poorly understood, and recent genome-wide surveys have revealed an apparent disparity between its chromosomal association patterns in different organisms.ResultsHere, we present the high-resolution analysis of cohesin localization along fission yeast chromosomes. This reveals that several determinants, thought specific for different organisms, come together to shape the overall distribution. Cohesin is detected at chromosomal loading sites, characterized by the cohesin loader Mis4/Ssl3, in regions of strong transcriptional activity. Cohesin also responds to transcription by downstream translocation and accumulation at convergent transcriptional terminators surrounding the loading sites. As cells enter mitosis, a fraction of cohesin leaves chromosomes in a cleavage-independent reaction, while a substantial pool of cohesin dissociates when it is cleaved at anaphase onset. We furthermore observe that centromeric cohesin spreads out onto chromosome arms during mitosis, dependent on Aurora B kinase activity, emphasizing the plasticity of cohesin behavior.ConclusionsOur findings suggest that features that were thought to differentiate cohesin between organisms collectively define the overall behavior of fission yeast cohesin. Apparent differences between organisms might reflect an emphasis on different aspects, rather than different principles, of cohesin action.


Journal of Materials Chemistry | 2012

Fabrication and applications of large arrays of multifunctional rolled-up SiO/SiO2 microtubes

Stefan Harazim; Wang Xi; Christine K. Schmidt; Samuel Sanchez; Oliver G. Schmidt

Biocompatible, multifunctional large arrays of transparent SiO/SiO2 microtubes are fabricated by rolled-up nanotech. The outer tubular diameter as a function of thicknesses of SiO and SiO2 has been systematically studied and the roll-up parameters have been optimized to deterministically achieve a yield of nearly 100%. A macroscopic continuum mechanical model is in good agreement with the experimental data. The relative ease in functionalization of the “glass” microtubes with different biomaterials renders rolled-up nanotech an excellent option for various on- and off-chip applications, including optofluidic sensors, micro-engines and pre-patterned 3D scaffolds for cell culturing.


The EMBO Journal | 2008

Cell-cycle regulation of cohesin stability along fission yeast chromosomes.

Pascal Bernard; Christine K. Schmidt; Sabine Vaur; Sonia Dheur; Julie Drogat; Sylvie Genier; Karl Ekwall; Frank Uhlmann; Jean‐Paul Javerzat

Sister chromatid cohesion is mediated by cohesin, but the process of cohesion establishment during S‐phase is still enigmatic. In mammalian cells, cohesin binding to chromatin is dynamic in G1, but becomes stabilized during S‐phase. Whether the regulation of cohesin stability is integral to the process of cohesion establishment is unknown. Here, we provide evidence that fission yeast cohesin also displays dynamic behavior. Cohesin association with G1 chromosomes requires continued activity of the cohesin loader Mis4/Ssl3, suggesting that repeated loading cycles maintain cohesin binding. Cohesin instability in G1 depends on wpl1, the fission yeast ortholog of mammalian Wapl, suggestive of a conserved mechanism that controls cohesin stability on chromosomes. wpl1 is nonessential, indicating that a change in wpl1‐dependent cohesin dynamics is dispensable for cohesion establishment. Instead, we find that cohesin stability increases at the time of S‐phase in a reaction that can be uncoupled from DNA replication. Hence, cohesin stabilization might be a pre‐requisite for cohesion establishment rather than its consequence.


Journal of Cellular and Molecular Medicine | 2011

Role for LAMP‐2 in endosomal cholesterol transport

Alexander Schneede; Christine K. Schmidt; Maarit Hölttä-Vuori; Jörg Heeren; Marion Willenborg; Judith Blanz; Mykola Domanskyy; Bernadette Breiden; Susanne Brodesser; Jobst Landgrebe; Konrad Sandhoff; Elina Ikonen; Paul Saftig; Eeva-Liisa Eskelinen

The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein‐2 (LAMP‐2) and LAMP‐1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP‐1 and LAMP‐2 (LAMP−/−), low‐density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild‐type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP−/− cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP‐2 deficient liver and that overexpression of LAMP‐2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP‐2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP−/− cells was diminished by overexpression of any of the three isoforms of LAMP‐2, but not by LAMP‐1. The LAMP‐2 luminal domain, the membrane‐proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP‐2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone‐mediated autophagy function of LAMP‐2.


Nature Cell Biology | 2015

Systematic E2 screening reveals a UBE2D–RNF138–CtIP axis promoting DNA repair

Christine K. Schmidt; Yaron Galanty; Matylda Sczaniecka-Clift; Julia Coates; Satpal Jhujh; Mukerrem Demir; Matthew Cornwell; Petra Beli

Ubiquitylation is crucial for proper cellular responses to DNA double-strand breaks (DSBs). If unrepaired, these highly cytotoxic lesions cause genome instability, tumorigenesis, neurodegeneration or premature ageing. Here, we conduct a comprehensive, multilayered screen to systematically profile all human ubiquitin E2 enzymes for impacts on cellular DSB responses. With a widely applicable approach, we use an exemplary E2 family, UBE2Ds, to identify ubiquitylation-cascade components downstream of E2s. Thus, we uncover the nuclear E3 ligase RNF138 as a key homologous recombination (HR)-promoting factor that functions with UBE2Ds in cells. Mechanistically, UBE2Ds and RNF138 accumulate at DNA-damage sites and act at early resection stages by promoting CtIP ubiquitylation and accrual. This work supplies insights into regulation of DSB repair by HR. Moreover, it provides a rich information resource on E2s that can be exploited by follow-on studies.


Nano Letters | 2014

Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies

Wang Xi; Christine K. Schmidt; Samuel Sanchez; David H. Gracias; Rafael E. Carazo-Salas; Oliver G. Schmidt

We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.


Molecular and Cellular Biology | 2014

USP28 is recruited to sites of DNA damage by the tandem BRCT domains of 53BP1 but plays a minor role in double-strand break metabolism

Philip A. Knobel; Yaron Galanty; Christine K. Schmidt; Travis H. Stracker

ABSTRACT The DNA damage response (DDR) is critical for genome stability and the suppression of a wide variety of human malignancies, including neurodevelopmental disorders, immunodeficiency, and cancer. In addition, the efficacy of many chemotherapeutic strategies is dictated by the status of the DDR. Ubiquitin-specific protease 28 (USP28) was reported to govern the stability of multiple factors that are critical for diverse aspects of the DDR. Here, we examined the effects of USP28 depletion on the DDR in cells and in vivo. We found that USP28 is recruited to double-strand breaks in a manner that requires the tandem BRCT domains of the DDR protein 53BP1. However, we observed only minor DDR defects in USP28-depleted cells, and mice lacking USP28 showed normal longevity, immunological development, and radiation responses. Our results thus indicate that USP28 is not a critical factor in double-strand break metabolism and is unlikely to be an attractive target for therapeutic intervention aimed at chemotherapy sensitization.

Collaboration


Dive into the Christine K. Schmidt's collaboration.

Top Co-Authors

Avatar

Oliver G. Schmidt

Chemnitz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia Coates

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mukerrem Demir

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satpal Jhujh

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge