Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Kamide is active.

Publication


Featured researches published by Christine Kamide.


Circulation Research | 2011

Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity

Susmita Sahoo; Ekaterina Klychko; Tina Thorne; Sol Misener; Kathryn M. Schultz; Meredith Millay; Aiko Ito; Ting Liu; Christine Kamide; Hemant Agrawal; Harris Perlman; Gangjian Qin; Raj Kishore; Douglas W. Losordo

Rationale: Transplantation of human CD34+ stem cells to ischemic tissues has been associated with reduced angina, improved exercise time, and reduced amputation rates in phase 2 clinical trials and has been shown to induce neovascularization in preclinical models. Previous studies have suggested that paracrine factors secreted by these proangiogenic cells are responsible, at least in part, for the angiogenic effects induced by CD34+ cell transplantation. Objective: Our objective was to investigate the mechanism of CD34+ stem cell–induced proangiogenic paracrine effects and to examine if exosomes, a component of paracrine secretion, are involved. Methods and Results: Exosomes collected from the conditioned media of mobilized human CD34+ cells had the characteristic size (40 to 90 nm; determined by dynamic light scattering), cup-shaped morphology (electron microscopy), expressed exosome-marker proteins CD63, phosphatidylserine (flow cytometry) and TSG101 (immunoblotting), besides expressing CD34+ cell lineage marker protein, CD34. In vitro, CD34+ exosomes replicated the angiogenic activity of CD34+ cells by increasing endothelial cell viability, proliferation, and tube formation on Matrigel. In vivo, the CD34+ exosomes stimulated angiogenesis in Matrigel plug and corneal assays. Interestingly, exosomes from CD34+ cells but not from CD34+ cell–depleted mononuclear cells had angiogenic activity. Conclusions: Our data demonstrate that human CD34+ cells secrete exosomes that have independent angiogenic activity both in vitro and in vivo. CD34+ exosomes may represent a significant component of the paracrine effect of progenitor cell transplantation for therapeutic angiogenesis.


Circulation Research | 2012

Sonic Hedgehog–Modified Human CD34+ Cells Preserve Cardiac Function After Acute Myocardial Infarction

Alexander R. Mackie; Ekaterina Klyachko; Tina Thorne; Kathryn M. Schultz; Meredith Millay; Aiko Ito; Christine Kamide; Ting Liu; Rajesh Gupta; Susmita Sahoo; Sol Misener; Raj Kishore; Douglas W. Losordo

Rationale: Ischemic cardiovascular disease represents one of the largest epidemics currently facing the aging population. Current literature has illustrated the efficacy of autologous, stem cell therapies as novel strategies for treating these disorders. The CD34+ hematopoetic stem cell has shown significant promise in addressing myocardial ischemia by promoting angiogenesis that helps preserve the functionality of ischemic myocardium. Unfortunately, both viability and angiogenic quality of autologous CD34+ cells decline with advanced age and diminished cardiovascular health. Objective: To offset age- and health-related angiogenic declines in CD34+ cells, we explored whether the therapeutic efficacy of human CD34+ cells could be enhanced by augmenting their secretion of the known angiogenic factor, sonic hedgehog (Shh). Methods and Results: When injected into the border zone of mice after acute myocardial infarction, Shh-modified CD34+ cells (CD34Shh) protected against ventricular dilation and cardiac functional declines associated with acute myocardial infarction. Treatment with CD34Shh also reduced infarct size and increased border zone capillary density compared with unmodified CD34 cells or cells transfected with the empty vector. CD34Shh primarily store and secrete Shh protein in exosomes and this storage process appears to be cell-type specific. In vitro analysis of exosomes derived from CD34Shh revealed that (1) exosomes transfer Shh protein to other cell types, and (2) exosomal transfer of functional Shh elicits induction of the canonical Shh signaling pathway in recipient cells. Conclusions: Exosome-mediated delivery of Shh to ischemic myocardium represents a major mechanism explaining the observed preservation of cardiac function in mice treated with CD34Shh cells.


Journal of Investigative Dermatology | 2012

CXCR4 Antagonist AMD3100 Accelerates Impaired Wound Healing in Diabetic Mice

Yukihide Nishimura; Masaaki; Gangjian Qin; Hiromichi Hamada; Jun Asai; Hideya Takenaka; Haruki Sekiguchi; Marie-Ange Renault; Kentaro Jujo; Norito Katoh; Saburo Kishimoto; Aiko Ito; Christine Kamide; John Kenny; Meredith Millay; Sol Misener; Tina Thorne; Douglas W. Losordo

The antagonism of CXC-chemokine receptor 4 (CXCR4) with AMD3100 improves cardiac performance after myocardial infarction by augmenting the recruitment of endothelial progenitor cells (EPCs) from the bone marrow to the regenerating vasculature. We investigated whether AMD3100 may accelerate diabetes-impaired wound healing through a similar mechanism. Skin wounds were made on the backs of leptin-receptor–deficient mice and treated with AMD3100 or saline. Fourteen days after treatment, wound closure was significantly more complete in AMD3100-treated mice (AMD3100: 87.0±2.6%, Saline: 33.1±1.8%; P<0.0001) and was accompanied by greater collagen-fiber formation, capillary density, smooth-muscle-containing vessel density, and monocyte/macrophage infiltration. On day 7 after treatment, AMD3100 was associated with higher circulating EPC and macrophage counts and with significantly upregulated mRNA levels of stromal-cell–derived factor 1 and platelet-derived growth-factor B in the wound bed. AMD3100 also promoted macrophage proliferation and phagocytosis and the migration and proliferation of diabetic mouse primary dermal fibroblasts and 3T3 fibroblasts, which express very little CXCR4. In conclusion, a single topical application of AMD3100 promoted wound healing in diabetic mice by increasing cytokine production, mobilizing bone-marrow EPCs, and enhancing the activity of fibroblasts and monocytes/macrophages, thereby increasing both angiogenesis and vasculogenesis. Not all of the AMD3100-mediated effects evolved through CXCR4 antagonism.


Circulation | 2013

Plasminogen Activator Inhibitor-1 Antagonist TM5441 Attenuates Nω-Nitro-l-Arginine Methyl Ester–Induced Hypertension and Vascular Senescence

Amanda E. Boe; Mesut Eren; Sheila B. Murphy; Christine Kamide; Atsuhiko Ichimura; David B. Terry; Danielle McAnally; Layton H. Smith; Toshio Miyata; Douglas E. Vaughan

Background nLong-term inhibition of nitric oxide synthase (NOS) by L-arginine analogues such as Nω-nitro-L-arginine methyl ester (L-NAME) has been shown to induce senescence in vitro and systemic hypertension and arteriosclerosis in vivo. We previously reported that PAI-1-deficient mice (PAI-1−/−) are protected against L-NAME-induced pathologies. In this study, we investigated whether a novel, orally active PAI-1 antagonist (TM5441) has a similar protective effect against L-NAME treatment. Additionally, we studied whether L-NAME can induce vascular senescence in vivo and investigated the role of PAI-1 in this process.Background— Long-term inhibition of nitric oxide synthase by L-arginine analogues such as N&ohgr;-nitro-L-arginine methyl ester (L-NAME) has been shown to induce senescence in vitro and systemic hypertension and arteriosclerosis in vivo. We previously reported that plasminogen activator inhibitor-1 (PAI-1)–deficient mice (PAI-1−/−) are protected against L-NAME-induced pathologies. In this study, we investigated whether a novel, orally active PAI-1 antagonist (TM5441) has a similar protective effect against L-NAME treatment. Additionally, we studied whether L-NAME can induce vascular senescence in vivo and investigated the role of PAI-1 in this process. Methods and Results— Wild-type mice received either L-NAME or L-NAME and TM5441 for 8 weeks. Systolic blood pressure was measured every 2 weeks. We found that TM5441 attenuated the development of hypertension and cardiac hypertrophy compared with animals that had received L-NAME alone. Additionally, TM5441-treated mice had a 34% reduction in periaortic fibrosis relative to animals on L-NAME alone. Finally, we investigated the development of vascular senescence by measuring p16Ink4a expression and telomere length in aortic tissue. We found that L-NAME increased p16Ink4a expression levels and decreased telomere length, both of which were prevented with TM5441 cotreatment. Conclusions— Pharmacological inhibition of PAI-1 is protective against the development of hypertension, cardiac hypertrophy, and periaortic fibrosis in mice treated with L-NAME. Furthermore, PAI-1 inhibition attenuates the arterial expression of p16Ink4a and maintains telomere length. PAI-1 appears to play a pivotal role in vascular senescence, and these findings suggest that PAI-1 antagonists may provide a novel approach in preventing vascular aging and hypertension.


Circulation | 2013

CXC-Chemokine Receptor 4 Antagonist AMD3100 Promotes Cardiac Functional Recovery After Ischemia/Reperfusion Injury via Endothelial Nitric Oxide Synthase–Dependent Mechanism

Kentaro Jujo; Masaaki; Haruki Sekiguchi; Ekaterina Klyachko; Sol Misener; Toshikazu Tanaka; Jörn Tongers; Jérôme Roncalli; Marie Ange Renault; Tina Thorne; Aiko Ito; Trevor Clarke; Christine Kamide; Yukio Tsurumi; Nobuhisa Hagiwara; Gangjian Qin; Michio Asahi; Douglas W. Losordo

Background— CXC-chemokine receptor 4 (CXCR4) regulates the retention of stem/progenitor cells in the bone marrow (BM), and the CXCR4 antagonist AMD3100 improves recovery from coronary ligation injury by mobilizing stem/progenitor cells from the BM to the peripheral blood. Thus, we investigated whether AMD3100 also improves recovery from ischemia/reperfusion injury, which more closely mimics myocardial infarction in patients, because blood flow is only temporarily obstructed. Methods and Results— Mice were treated with single subcutaneous injections of AMD3100 (5 mg/kg) or saline after ischemia/reperfusion injury. Three days later, histological measurements of the ratio of infarct area to area at risk were smaller in AMD3100-treated mice than in mice administered saline, and echocardiographic measurements of left ventricular function were greater in the AMD3100-treated mice at week 4. CXCR4+ cells were mobilized for just 1 day in both groups, but the mobilization of sca1+/flk1+ cells endured for 7 days in AMD3100-treated mice compared with just 1 day in the saline-treated mice. AMD3100 upregulated BM levels of endothelial nitric oxide synthase (eNOS) and 2 targets of eNOS signaling, matrix metalloproteinase-9 and soluble Kit ligand. Furthermore, the loss of BM eNOS expression abolished the benefit of AMD3100 on sca1+/flk1+ cell mobilization without altering the mobilization of CXCR4+ cells, and the cardioprotective effects of AMD3100 were retained in eNOS-knockout mice that had been transplanted with BM from wild-type mice but not in wild-type mice with eNOS-knockout BM. Conclusions— AMD3100 prolongs BM progenitor mobilization and improves recovery from ischemia/reperfusion injury, and these benefits appear to occur through a previously unidentified link between AMD3100 and BM eNOS expression.


Circulation Research | 2009

The Hedgehog Transcription Factor Gli3 Modulates Angiogenesis

Marie-Ange Renault; Jérôme Roncalli; Jörn Tongers; Sol Misener; Tina Thorne; Kentaro Jujo; Aiko Ito; Trevor Clarke; Chris Fung; Meredith Millay; Christine Kamide; Andrew Scarpelli; Ekaterina Klyachko; Douglas W. Losordo

Rationale: The Gli transcription factors are mediators of Hedgehog (Hh) signaling and have been shown to play critical roles during embryogenesis. Previously, we have demonstrated that the Hh pathway is reactivated by ischemia in adult mammals, and that this pathway can be stimulated for therapeutic benefit; however, the specific roles of the Gli transcription factors during ischemia-induced Hh signaling have not been elucidated. Objective: To investigate the role of Gli3 in ischemic tissue repair. Methods and Results: Gli3-haploinsufficient (Gli3+/−) mice and their wild-type littermates were physiologically similar in the absence of ischemia; however, histological assessments of capillary density and echocardiographic measurements of left ventricular ejection fractions were reduced in Gli3+/− mice compared to wild-type mice after surgically induced myocardial infarction, and fibrosis was increased. Gli3-deficient mice also displayed reduced capillary density after induction of hindlimb ischemia and an impaired angiogenic response to vascular endothelial growth factor in the corneal angiogenesis model. In endothelial cells, adenovirus-mediated overexpression of Gli3 promoted migration (modified Boyden chamber), small interfering RNA–mediated downregulation of Gli3 delayed tube formation (Matrigel), and Western analyses identified increases in Akt phosphorylation, extracellular signal-regulated kinase (ERK)1/2 activation, and c-Fos expression; however, promoter–reporter assays indicated that Gli3 overexpression does not modulate Gli-dependent transcription. Furthermore, the induction of endothelial cell migration by Gli3 was dependent on Akt and ERK1/2 activation. Conclusions: Collectively, these observations indicate that Gli3 contributes to vessel growth under both ischemic and nonischemic conditions and provide the first evidence that Gli3 regulates angiogenesis and endothelial cell activity in adult mammals.


Journal of the American College of Cardiology | 2011

Sonic-hedgehog–induced functional recovery after myocardial infarction is enhanced by AMD3100-mediated progenitor-cell mobilization

Jérôme Roncalli; Marie-Ange Renault; Jörn Tongers; Sol Misener; Tina Thorne; Christine Kamide; Kentaro Jujo; Toshikazu Tanaka; Masaaki; Ekaterina Klyachko; Douglas W. Losordo

OBJECTIVESnThis study was designed to compare the effectiveness of Sonic hedgehog (Shh) gene transfer, AMD3100-induced progenitor-cell mobilization, and Shh-AMD3100 combination therapy for treatment of surgically induced myocardial infarction (MI) in mice.nnnBACKGROUNDnShh gene transfer improves myocardial recovery by up-regulating angiogenic genes and enhancing the incorporation of bone marrow-derived progenitor cells (BMPCs) in infarcted myocardium. Here, we investigated whether the effectiveness of Shh gene therapy could be improved with AMD3100-induced progenitor-cell mobilization.nnnMETHODSnGene expression and cell function were evaluated in cells cultured with medium collected from fibroblasts transfected with plasmids encoding human Shh (phShh). MI was induced in wild-type mice, in matrix metalloproteinase (MMP)-9 knockout mice, and in mice transplanted with bone marrow that expressed green-fluorescent protein. Mice were treated with 100 μg of phShh (administered intramyocardially), 5 mg/kg of AMD3100 (administered subcutaneously), or both; cardiac function was evaluated echocardiographically, and fibrosis, capillary density, and BMPC incorporation were evaluated immunohistochemically.nnnRESULTSnphShh increased vascular endothelial growth factor and stromal cell-derived factor 1 expression in fibroblasts; the medium from phShh-transfected fibroblasts increased endothelial-cell migration and the migration, proliferation, and tube formation of BMPCs. Combination therapy enhanced cardiac functional recovery (i.e., left ventricular ejection fraction) in wild-type mice, but not in MMP-9 knockout mice, and was associated with less fibrosis, greater capillary density and smooth muscle-containing vessel density, and enhanced BMPC incorporation.nnnCONCLUSIONSnCombination therapy consisting of intramyocardial Shh gene transfer and AMD3100-induced progenitor-cell mobilization improves cardiac functional recovery after MI and is superior to either individual treatment for promoting therapeutic neovascularization.


Circulation Research | 2017

Angiogenic Mechanisms of Human CD34+ Stem Cell Exosomes in the Repair of Ischemic Hindlimb

Prabhu Mathiyalagan; Yaxuan Liang; David Kim; Sol Misener; Tina Thorne; Christine Kamide; Ekaterina Klyachko; Douglas W. Losordo; Roger J. Hajjar; Susmita Sahoo

Rationale: Paracrine secretions seem to mediate therapeutic effects of human CD34+ stem cells locally transplanted in patients with myocardial and critical limb ischemia and in animal models. Earlier, we had discovered that paracrine secretion from human CD34+ cells contains proangiogenic, membrane-bound nanovesicles called exosomes (CD34Exo). Objective: Here, we investigated the mechanisms of CD34Exo-mediated ischemic tissue repair and therapeutic angiogenesis by studying their miRNA content and uptake. Methods and Results: When injected into mouse ischemic hindlimb tissue, CD34Exo, but not the CD34Exo-depleted conditioned media, mimicked the beneficial activity of their parent cells by improving ischemic limb perfusion, capillary density, motor function, and their amputation. CD34Exo were found to be enriched with proangiogenic miRNAs such as miR-126-3p. Knocking down miR-126-3p from CD34Exo abolished their angiogenic activity and beneficial function both in vitro and in vivo. Interestingly, injection of CD34Exo increased miR-126-3p levels in mouse ischemic limb but did not affect the endogenous synthesis of miR-126-3p, suggesting a direct transfer of stable and functional exosomal miR-126-3p. miR-126-3p enhanced angiogenesis by suppressing the expression of its known target, SPRED1, simultaneously modulating the expression of genes involved in angiogenic pathways such as VEGF (vascular endothelial growth factor), ANG1 (angiopoietin 1), ANG2 (angiopoietin 2), MMP9 (matrix metallopeptidase 9), TSP1 (thrombospondin 1), etc. Interestingly, CD34Exo, when treated to ischemic hindlimbs, were most efficiently internalized by endothelial cells relative to smooth muscle cells and fibroblasts, demonstrating a direct role of stem cell–derived exosomes on mouse endothelium at the cellular level. Conclusions: Collectively, our results have demonstrated a novel mechanism by which cell-free CD34Exo mediates ischemic tissue repair via beneficial angiogenesis. Exosome-shuttled proangiogenic miRNAs may signify amplification of stem cell function and may explain the angiogenic and therapeutic benefits associated with CD34+ stem cell therapy.


Journal of the American Heart Association | 2015

Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury

Konrad T. Sawicki; Meng Shang; Rongxue Wu; Hsiang Chun Chang; Arineh Khechaduri; Tatsuya Sato; Christine Kamide; Ting Liu; Sathyamangla V. Naga Prasad; Hossein Ardehali

Background Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. Methods and Results We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Conclusions Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the development of heart failure.


Journal of Molecular and Cellular Cardiology | 2014

Enhanced Potency of Cell-based Therapy for Ischemic Tissue Repair Using an Injectable Bioactive Epitope-presenting Nanofiber Support Matrix

Jörn Tongers; Matthew J. Webber; Erin E Vaughan; Eduard Sleep; Marie Ange Renault; Jérôme Roncalli; Ekaterina Klyachko; Tina Thorne; Yang Yu; Katja Theres Marquardt; Christine Kamide; Aiko Ito; Sol Misener; Meredith Millay; Ting Liu; Kentaro Jujo; Gangjian Qin; Douglas W. Losordo; Samuel I. Stupp; Raj Kishore

The translation of cell-based therapies for ischemic tissue repair remains limited by several factors, including poor cell survival and limited target site retention. Advances in nanotechnology enable the development of specifically designed delivery matrices to address these limitations and thereby improve the efficacy of cell-based therapies. Given the relevance of integrin signaling for cellular homeostasis, we developed an injectable, bioactive peptide-based nanofiber matrix that presents an integrin-binding epitope derived from fibronectin, and evaluated its feasibility as a supportive artificial matrix for bone marrow-derived pro-angiogenic cells (BMPACs) used as a therapy in ischemic tissue repair. Incubation of BMPACs with these peptide nanofibers in vitro significantly attenuated apoptosis while enhancing proliferation and adhesion. Pro-angiogenic function was enhanced, as cells readily formed tubes. These effects were, in part, mediated via p38, and p44/p42 MAP kinases, which are downstream pathways of focal adhesion kinase. In a murine model of hind limb ischemia, an intramuscular injection of BMPACs within this bioactive peptide nanofiber matrix resulted in greater retention of cells, enhanced capillary density, increased limb perfusion, reduced necrosis/amputation, and preserved function of the ischemic limb compared to treatment with cells alone. This self-assembling, bioactive peptide nanofiber matrix presenting an integrin-binding domain of fibronectin improves regenerative efficacy of cell-based strategies in ischemic tissue by enhancing cell survival, retention, and reparative functions.

Collaboration


Dive into the Christine Kamide's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sol Misener

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Tina Thorne

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aiko Ito

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Kentaro Jujo

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Ting Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Gangjian Qin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susmita Sahoo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge