Christine Lawson
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Lawson.
Developmental Cell | 2012
Xiao Lei Chen; Ju-Ock Nam; Christine Jean; Christine Lawson; Colin Walsh; Erik Goka; Ssang-Taek Lim; Alok Tomar; Isabelle Tancioni; Sean Uryu; Jun-Lin Guan; Lisette M. Acevedo; Sara M. Weis; David A. Cheresh; David D. Schlaepfer
Endothelial cells (ECs) form cell-cell adhesive junctional structures maintaining vascular integrity. This barrier is dynamically regulated by vascular endothelial growth factor (VEGF) receptor signaling. We created an inducible knockin mouse model to study the contribution of the integrin-associated focal adhesion tyrosine kinase (FAK) signaling on vascular function. Here we show that genetic or pharmacological FAK inhibition in ECs prevents VEGF-stimulated permeability downstream of VEGF receptor or Src tyrosine kinase activation in vivo. VEGF promotes tension-independent FAK activation, rapid FAK localization to cell-cell junctions, binding of the FAK FERM domain to the vascular endothelial cadherin (VE-cadherin) cytoplasmic tail, and direct FAK phosphorylation of β-catenin at tyrosine-142 (Y142) facilitating VE-cadherin-β-catenin dissociation and EC junctional breakdown. Kinase inhibited FAK is in a closed conformation that prevents VE-cadherin association and limits VEGF-stimulated β-catenin Y142 phosphorylation. Our studies establish a role for FAK as an essential signaling switch within ECs regulating adherens junction dynamics.
Journal of Cell Biology | 2012
Christine Lawson; Ssang-Taek Lim; Sean Uryu; Xiao Lei Chen; David A. Calderwood; David D. Schlaepfer
An alternative linkage is shown whereby FAK brings talin to nascent adhesions independent of talin binding to β1 integrins.
Journal of Cell Biology | 2014
Christine Jean; Xiao Lei Chen; Ju-Ock Nam; Isabelle Tancioni; Sean Uryu; Christine Lawson; Kristy K. Ward; Colin Walsh; Nichol L. G. Miller; Majid Ghassemian; Patric Turowski; Elisabetta Dejana; Sara M. Weis; David A. Cheresh; David D. Schlaepfer
Endothelial cell focal adhesion kinase is a key intermediate between c-Src and the regulation of endothelial cell barrier function in the control of tumor metastasis.
Journal of Cell Biology | 2012
Ssang-Taek Lim; Nichol L. G. Miller; Xiao Lei Chen; Isabelle Tancioni; Colin Walsh; Christine Lawson; Sean Uryu; Sara M. Weis; David A. Cheresh; David D. Schlaepfer
Kinase-inhibited FAK limits VCAM-1 production via nuclear localization and promotion of GATA4 turnover.
PLOS ONE | 2012
Alok Tomar; Christine Lawson; Majid Ghassemian; David D. Schlaepfer
Background Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear. Principal Findings Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin. Conclusions Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement.
Molecular Cancer Therapeutics | 2014
Isabelle Tancioni; Sean Uryu; Florian J. Sulzmaier; Nina R. Shah; Christine Lawson; Nichol L. G. Miller; Christine Jean; Xiao Lei Chen; Kristy K. Ward; David D. Schlaepfer
Ovarian cancer ascites fluid contains matrix proteins that can impact tumor growth via integrin receptor binding. In human ovarian tumor tissue arrays, we find that activation of the cytoplasmic focal adhesion (FAK) tyrosine kinase parallels increased tumor stage, β5 integrin, and osteopontin matrix staining. Elevated osteopontin, β5 integrin, and FAK mRNA levels are associated with decreased serous ovarian cancer patient survival. FAK remains active within ovarian cancer cells grown as spheroids, and anchorage-independent growth analyses of seven ovarian carcinoma cell lines identified sensitive (HEY, OVCAR8) and resistant (SKOV3-IP, OVCAR10) cells to 0.1 μmol/L FAK inhibitor (VS-4718, formerly PND-1186) treatment. VS-4718 promoted HEY and OVCAR8 G0–G1 cell-cycle arrest followed by cell death, whereas growth of SKOV3-IP and OVCAR10 cells was resistant to 1.0 μmol/L VS-4718. In HEY cells, genetic or pharmacological FAK inhibition prevented tumor growth in mice with corresponding reductions in β5 integrin and osteopontin expression. β5 knockdown reduced HEY cell growth in soft agar, tumor growth in mice, and both FAK Y397 phosphorylation and osteopontin expression in spheroids. FAK inhibitor–resistant (SKOV3-IP, OVCAR10) cells exhibited anchorage-independent Akt S473 phosphorylation, and expression of membrane-targeted and active Akt in sensitive cells (HEY, OVCAR8) increased growth but did not create a FAK inhibitor–resistant phenotype. These results link osteopontin, β5 integrin, and FAK in promoting ovarian tumor progression. β5 integrin expression may serve as a biomarker for serous ovarian carcinoma cells that possess active FAK signaling. Mol Cancer Ther; 13(8); 2050–61. ©2014 AACR.
PLOS ONE | 2012
Nichol L. G. Miller; Christine Lawson; Xiao Lei Chen; Ssang-Taek Lim; David D. Schlaepfer
Background Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility. Principal Findings Rgnef exon 24 floxed mice (Rgnefflox) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous RgnefWT/flox (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnefflox/flox (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnefflox/flox (Cre+) (Rgnef−/−) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef−/− MEF phenotypes were rescued by epitope-tagged Rgnef re-expression. Conclusions Rgnef−/− MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration.
Gynecologic Oncology | 2014
Nina R. Shah; Isabelle Tancioni; Kristy K. Ward; Christine Lawson; Xiao Lei Chen; Christine Jean; Florian J. Sulzmaier; Sean Uryu; Nichol L. G. Miller; Denise C. Connolly; David D. Schlaepfer
OBJECTIVE Focal adhesion kinase (FAK) is overexpressed in serous ovarian cancer. Loss of merlin, a product of the neurofibromatosis 2 tumor suppressor gene, is being evaluated as a biomarker for FAK inhibitor sensitivity in mesothelioma. Connections between merlin and FAK in ovarian cancer remain undefined. METHODS Nine human and two murine ovarian cancer cell lines were analyzed for growth in the presence of a small molecule FAK inhibitor (PF-271, also termed VS-6062) from 0.1 to 1 μM for 72 h. Merlin was evaluated by immunoblotting and immunostaining of a human ovarian tumor tissue array. Growth of cells was analyzed in an orthotopic tumor model and evaluated in vitro after stable shRNA-mediated merlin knockdown. RESULTS Greater than 50% inhibition of OVCAR8, HEY, and ID8-IP ovarian carcinoma cell growth occurred with 0.1 μM PF-271 in anchorage-independent (p<0.001) but not in adherent culture conditions. PF-271-mediated reduction in FAK Y397 phosphorylation occurred independently of growth inhibition. Suspended growth of OVCAR3, OVCAR10, IGROV1, IGROV1-IP, SKOV3, SKOV3-IP, A2780, and 5009-MOVCAR was not affected by 0.1 μM PF-271. Merlin expression did not correlate with serous ovarian tumor grade or stage. PF-271 (30 mg/kg, BID) did not inhibit 5009-MOVCAR tumor growth and merlin knockdown in SKOV3-IP and OVCAR10 cells did not alter suspended cell growth upon PF-271 addition. CONCLUSIONS Differential responsiveness to FAK inhibitor treatment was observed. Intrinsic low merlin protein level correlated with PF-271-mediated anchorage-independent growth inhibition, but reduction in merlin expression did not induce sensitivity to FAK inhibition. Merlin levels may be useful for patient stratification in FAK inhibitor trials.
Journal of Cell Science | 2013
Nichol L. G. Miller; Christine Lawson; Elizabeth G. Kleinschmidt; Isabelle Tancioni; Sean Uryu; David D. Schlaepfer
Summary Rgnef (also known as p190RhoGEF or ARHGEF28) is a Rho guanine-nucleotide-exchange factor (GEF) that binds focal adhesion kinase (FAK). FAK is recruited to adhesions and activated by integrin receptors binding to matrix proteins, such as fibronectin (FN). Canonical models place Rgnef downstream of integrin–FAK signaling in regulating Rho GTPase activity and cell movement. Herein, we establish a new, upstream role for Rgnef in enhancing FAK localization to early peripheral adhesions and promoting FAK activation upon FN binding. Rgnef-null mouse embryo fibroblasts (MEFs) exhibit defects in adhesion formation, levels of FAK phosphotyrosine (pY)-397 and FAK localization to peripheral adhesions upon re-plating on FN. Rgnef re-expression rescues these defects, but requires Rgnef–FAK binding. A mutation in the Rgnef pleckstrin homology (PH) domain inhibits adhesion formation, FAK localization, and FAK-Y397 and paxillin-Y118 phosphorylation without disrupting the Rgnef–FAK interaction. A GEF-inactive Rgnef mutant rescues FAK-Y397 phosphorylation and early adhesion localization, but not paxillin-Y118 phosphorylation. This suggests that, downstream of FN binding, paxillin-pY118 requires Rgnef GEF activity through a mechanism distinct from adhesion formation and FAK activation. These results support a scaffolding role for Rgnef in FAK localization and activation at early adhesions in a PH-domain-dependent but GEF-activity-independent manner.
Breast Cancer Research | 2015
Isabelle Tancioni; Nichol Miller; Sean Uryu; Christine Lawson; Christine Jean; Xiao Lei Chen; Elizabeth G. Kleinschmidt; David D. Schlaepfer
IntroductionFocal adhesion kinase (FAK) controls cell growth and survival downstream of integrin-matrix receptors. Upon adhesion loss or FAK inhibition, FAK can translocate to the nucleus. The nucleolus is a non-membrane nuclear structure that regulates ribosome biogenesis and cell proliferation. Nucleostemin (NS), a nucleolar-localized protein, modulates cell cycle progression, stemness, and three-dimensional tumor spheroid formation. The signaling pathways that regulate NS levels in tumors remain undefined.MethodsHuman breast carcinoma cells were evaluated for growth in culture (adherent and anchorage-independent spheroid) and as orthotopic tumors. FAK signaling was evaluated by pharmacological FAK inhibitor addition (PF-271, IC50 ~ 0.1 μM) and by small hairpin RNA (shRNA) knockdown followed by re-expression of FAK wildtype (WT) or a kinase-dead (KD, K454R) FAK point mutant. Immunoblotting was used to evaluate FAK, NS, nucleolar phosphoprotein B23, and nucleolin levels. Total and phosphospecific antibody imunoblotting were used to detect changes in FAK, Akt kinase (Akt also known as protein kinase B), and 4E-binding protein 1 (4E-BP1) phosphorylation, a translation repressor protein and target of the mammalian target of rapamycin (mTOR) complex. Immunohistochemical, co-immunoprecipitation, and cellular fractionation analyses were used to evaluate FAK association with nucleoli.ResultsPharmacological (0.1 μM PF-271) or genetic inhibition of FAK activity prevents MDA-MB-231 and 4T1L breast carcinoma growth as spheroids and as orthotopic tumors. FAK inhibition triggers proteasome-mediated decreased NS levels but no changes in other nucleolar proteins such as B23 (nucleophosmin) or nucleolin. Active FAK was associated with purified nucleoli of anchorage-independent cells and present within nucleoli of human invasive ductal carcinoma tumor samples. FAK co-immunoprecipitated with B23 that binds NS and a complex between FAK, NS, Akt, and mTOR was detected. Constitutively-active Akt kinase promoted tumor spheroid growth, stabilized NS levels, and promoted pS65 4E-BP1 phosphorylation in the presence of inhibited FAK. Rapamycin lowered NS levels and inhibited pS65 4E-BP1 phosphorylation in cells with activated Akt-mTOR signaling.ConclusionsFAK signaling occurs in the nucleolus, active FAK protects NS, and Akt-mTOR pathway regulates NS protein stability needed for breast carcinoma spheroid and tumor growth.