Christine Le Signor
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Le Signor.
Plant Physiology | 2012
Nils Braun; Alexandre de Saint Germain; Jean-Paul Pillot; Stéphanie Boutet-Mercey; Marion Dalmais; Ioanna Antoniadi; Xin Li; Alessandra Maia-Grondard; Christine Le Signor; Nathalie Bouteiller; Da Luo; Abdelhafid Bendahmane; Colin Turnbull; Catherine Rameau
The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.
Plant Journal | 2011
Julie Plet; Anton P. Wasson; Federico Ariel; Christine Le Signor; David Baker; Ulrike Mathesius; Martin Crespi; Florian Frugier
Phytohormonal interactions are essential to regulate plant organogenesis. In response to the presence of signals from symbiotic bacteria, the Nod factors, legume roots generate a new organ: the nitrogen-fixing nodule. Analysis of mutants in the Medicago truncatula CRE1 cytokinin receptor and of the MtRR4 cytokinin primary response gene expression pattern revealed that cytokinin acts in initial cortical cell divisions and later in the transition between meristematic and differentiation zones of the mature nodule. MtCRE1 signaling is required for activation of the downstream nodulation-related transcription factors MtERN1, MtNSP2 and MtNIN, as well as to regulate expression and accumulation of PIN auxin efflux carriers. Whereas the MtCRE1 pathway is required to allow the inhibition of polar auxin transport in response to rhizobia, nodulation is still negatively regulated by the MtEIN2/SICKLE-dependent ethylene pathway in cre1 mutants. Hence, MtCRE1 signaling acts as a regulatory knob, integrating positive plant and bacterial cues to control legume nodule organogenesis.
Genome Biology | 2008
Marion Dalmais; Julien Schmidt; Christine Le Signor; Françoise Moussy; Judith Burstin; Vincent Savois; Grégoire Aubert; Véronique Brunaud; Yannick de Oliveira; Cécile Guichard; Richard Thompson; Abdelhafid Bendahmane
The systematic characterization of gene functions in species recalcitrant to Agrobacterium-based transformation, like Pisum sativum, remains a challenge. To develop a high throughput forward and reverse genetics tool in pea, we have constructed a reference ethylmethane sulfonate mutant population and developed a database, UTILLdb, that contains phenotypic as well as sequence information on mutant genes. UTILLdb can be searched online for TILLING alleles, through the BLAST tool, or for phenotypic information about mutants by keywords.
The Plant Cell | 2009
Julie Hofer; Lynda Turner; Carol Moreau; Mike Ambrose; Peter Isaac; Susan Butcher; James L. Weller; Adeline Dupin; Marion Dalmais; Christine Le Signor; Abdelhafid Bendahmane; Noel Ellis
Tendrils are contact-sensitive, filamentous organs that permit climbing plants to tether to their taller neighbors. Tendrilled legume species are grown as field crops, where the tendrils contribute to the physical support of the crop prior to harvest. The homeotic tendril-less (tl) mutation in garden pea (Pisum sativum), identified almost a century ago, transforms tendrils into leaflets. In this study, we used a systematic marker screen of fast neutron–generated tl deletion mutants to identify Tl as a Class I homeodomain leucine zipper (HDZIP) transcription factor. We confirmed the tendril-less phenotype as loss of function by targeting induced local lesions in genomes (TILLING) in garden pea and by analysis of the tendril-less phenotype of the t mutant in sweet pea (Lathyrus odoratus). The conversion of tendrils into leaflets in both mutants demonstrates that the pea tendril is a modified leaflet, inhibited from completing laminar development by Tl. We provide evidence to show that lamina inhibition requires Unifoliata/LEAFY-mediated Tl expression in organs emerging in the distal region of the leaf primordium. Phylogenetic analyses show that Tl is an unusual Class I HDZIP protein and that tendrils evolved either once or twice in Papilionoid legumes. We suggest that tendrils arose in the Fabeae clade of Papilionoid legumes through acquisition of the Tl gene.
Plant Biotechnology Journal | 2009
Christine Le Signor; Vincent Savois; Grégoire Aubert; Jerome Verdier; Marie Georgette Nicolas; Gaelle Pagny; Françoise Moussy; Myriam Sanchez; Dave Baker; Jonathan Clarke; Richard Thompson
Medicago truncatula has been widely adopted as a model plant for crop legume species of the Vicieae. Despite the availability of transformation and regeneration protocols, there are currently limited tools available in this species for the systematic investigation of gene function. Within the framework of the European Grain Legumes Integrated Project (http://www.eugrainlegumes.org), chemical mutagenesis was applied to M. truncatula to create two mutant populations that were used to establish a TILLING (targeting induced local lesions in genomes) platform and a phenotypic database, allowing both reverse and forward genetics screens. Both populations had the same M2 line number, but differed in their M1 population size: population 1 was derived from a small M1 population (one-tenth the size of the M2 generation), whereas population 2 was generated by single seed descent and therefore has M1 and M2 generations of equal size. Fifty-six targets were screened, 10 on both populations, and 546 point mutations were identified. Population 2 had a mutation frequency of 1/485 kb, twice that of population 1. The strategy used to generate population 2 is more efficient than that used to generate population 1, with regard to mutagenesis density and mutation recovery. However, the design of population 1 allowed us to estimate the genetically effective cell number to be three in M. truncatula. Phenotyping data to help forward screenings are publicly available, as well as a web tool for ordering seeds at http://www.inra.fr/legumbase.
BMC Molecular Biology | 2008
Karine Triques; Elodie Piednoir; Marion Dalmais; Julien Schmidt; Christine Le Signor; Mark Sharkey; Michel Caboche; Bénédicte Sturbois; Abdelhafid Bendahmane
BackgroundMost enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA by a mismatch-specific endonuclease at mismatch sites and the analysis of the digestion product on a DNA sequencer. Important limitations of these methods are the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in pool of DNA, the cost of the analysis and the ease by which the technique could be implemented in a standard molecular biology laboratory.ResultsThe co-agroinfiltration of ENDO1 and p19 constructs into N. benthamiana leaves allowed high level of transient expression of a mismatch-specific and sensitive endonuclease, ENDO1 from Arabidopsis thaliana. We demonstrate the broad range of uses of the produced enzyme in detection of mutations. In human, we report the diagnosis of the G1691A mutation in Leiden factor-V gene associated with venous thrombosis and the fingerprinting of HIV-1 quasispecies in patients subjected to antiretroviral treatments. In plants, we report the use of ENDO1 system for detection of mutant alleles of Retinoblastoma-related gene by TILLING in Pisum sativum and discovery of natural sequence variations by Eco-TILLING in Arabidopsis thaliana.ConclusionWe introduce a cost-effective tool based on a simplified purification protocol of a mismatch-specific and sensitive endonuclease, ENDO1. Especially, we report the successful applications of ENDO1 in mutation diagnostics in humans, fingerprinting of complex population of viruses, and in TILLING and Eco-TILLING in plants.
Plant Physiology | 2012
Nathan D. Tivendale; Sandra E. Davidson; Noel W. Davies; Jason A. Smith; Marion Dalmais; Abdelhafid Bendahmane; Laura J. Quittenden; Lily Sutton; Raj K. Bala; Christine Le Signor; Richard Thompson; James Horne; James B. Reid; John Ross
Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea.
Frontiers in Plant Science | 2014
Karine Gallardo; Pierre-Emmanuel Courty; Christine Le Signor; Daniel Wipf; Vanessa Vernoud
Drought and salinity are two frequently combined abiotic stresses that affect plant growth, development, and crop productivity. Sulfate, and molecules derived from this anion such as glutathione, play important roles in the intrinsic responses of plants to such abiotic stresses. Therefore, understanding how plants facing environmental constraints re-equilibrate the flux of sulfate between and within different tissues might uncover perspectives for improving tolerance against abiotic stresses. In this review, we took advantage of genomics and post-genomics resources available in Arabidopsis thaliana and in the model legume species Medicago truncatula to highlight and compare the regulation of sulfate transporter genes under drought and salt stress. We also discuss their possible function in the plant’s response and adaptation to abiotic stresses and present prospects about the potential benefits of mycorrhizal associations, which by facilitating sulfate uptake may assist plants to cope with abiotic stresses. Several transporters are highlighted in this review that appear promising targets for improving sulfate transport capacities of crops under fluctuating environmental conditions.
Euphytica | 2002
Virginie Bourion; Guy Fouilloux; Christine Le Signor; Isabelle Lejeune-Hénaut
AbstractIn this study we investigated the genetic determinism of criteria suitable for breeding for seed yield and yield stability in dry pea (Pisum sativumL.) using a diallel cross involving eight genotypes. Seven criteria related to plant and seed development were evaluated including: onset of flowering, node of first flower, leaf appearance rate, rate of progression of flowering, number of podded nodes on the main stem, mean dry seed weight per podded node and number of basal branches per plant. Most of these traits measured are related to timing of seed set and are thought to be critical in determining yield stability. We combined different diallel analyses (Hayman,1954; Griffing, 1956) with a Principal Component Analysis, to divide the parental lines into groups sharing similar genetic control for the traits studied. We found that the two main groups, defined according to their genetic control of node of first flower, also differed for all the others characters and, in particular, did not reach the same levels of productivity. These results indicated that crosses within the group with the highest productivity, but between lines with differing development and architectural features, could be a good starting point for breeding high-yield pure lines.
Mycorrhiza | 2009
Dominique Morandi; Christine Le Signor; Vivienne Gianinazzi-Pearson; Gérard Duc
One key strategy for the identification of plant genes required for mycorrhizal development is the use of plant mutants affected in mycorrhizal colonisation. In this paper, we report a new Medicago truncatula mutant defective for nodulation but hypermycorrhizal for symbiosis development and response. This mutant, called B9, presents a poor shoot and, especially, root development with short laterals. Inoculation with Glomus intraradices results in significantly higher root colonisation of the mutant than the wild-type genotype A17 (+20% for total root length, +16% for arbuscule frequency in the colonised part of the root, +39% for arbuscule frequency in the total root system). Mycorrhizal effects on shoot and root biomass of B9 plants are about twofold greater than in the wild-type genotype. The B9 mutant of M. truncatula is characterised by considerably higher root concentrations of the phytoestrogen coumestrol and by the novel synthesis of the coumestrol conjugate malonyl glycoside, absent from roots of wild-type plants. In conclusion, this is the first time that a hypermycorrhizal plant mutant affected negatively for nodulation (Myc++, Nod −/+ phenotype) is reported. This mutant represents a new tool for the study of plant genes differentially regulating mycorrhiza and nodulation symbioses, in particular, those related to autoregulation mechanisms.