Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Leroy is active.

Publication


Featured researches published by Christine Leroy.


EMBO Reports | 2000

HNF1α controls renal glucose reabsorption in mouse and man

Marco Pontoglio; Dominique Prié; Claire Cheret; Antonia Doyen; Christine Leroy; Philippe Froguel; Gilberto Velho; Moshe Yaniv; Gérard Friedlander

Recently it has been shown that dominant mutations in the human hepatocyte nuclear factor 1 α (HNF1α) gene, encoding for a homeoprotein that is expressed in liver, kidney, pancreas and intestine, result in maturity onset diabetes of the young type 3 (MODY3). HNF1α‐null mice are diabetic, but at the same time suffer from a renal Fanconi syndrome characterized by urinary glucose loss. Here we show that MODY3 patients are also characterized by a reduced tubular reabsorption of glucose. The renal murine defect is due to reduced expression of the low affinity/high capacity glucose cotransporter (SGLT2). Our results show that HNF1α directly controls SGLT2 gene expression. Together these data indicate that HNF1α plays a key role in glucose homeostasis in mammals.


Journal of Biological Chemistry | 2005

Delineating a CA2+ binding pocket within the venus flytrap module of the human calcium sensing receptor

Caroline Silve; Christophe Petrel; Christine Leroy; Henri Bruel; Eric Mallet; Didier Rognan; Martial Ruat

The Ca2+-sensing receptor (CaSR) belongs to the class III G-protein-coupled receptors (GPCRs), which include receptors for pheromones, amino acids, sweeteners, and the neurotransmitters glutamate and γ-aminobutyric acid (GABA). These receptors are characterized by a long extracellular amino-terminal domain called a Venus flytrap module (VFTM) containing the ligand binding pocket. To elucidate the molecular determinants implicated in Ca2+ recognition by the CaSR VFTM, we developed a homology model of the human CaSR VFTM from the x-ray structure of the metabotropic glutamate receptor type 1 (mGluR1), and a phylogenetic analysis of 14 class III GPCR VFTMs. We identified critical amino acids delineating a Ca2+ binding pocket predicted to be adjacent to, but distinct from, a cavity reminiscent of the binding site described for amino acids in mGluRs, GABA-B receptor, and GPRC6a. Most interestingly, these Ca2+-contacting residues are well conserved within class III GPCR VFTMs. Our model was validated by mutational and functional analysis, including the characterization of activating and inactivating mutations affecting a single amino acid, Glu-297, located within the proposed Ca2+ binding pocket of the CaSR and associated with autosomal dominant hypocalcemia and familial hypocalciuric hypercalcemia, respectively, genetic diseases characterized by perturbations in Ca2+ homeostasis. Altogether, these data define a Ca2+ binding pocket within the CaSR VFTM that may be conserved in several other class III GPCRs, thereby providing a molecular basis for extracellular Ca2+ sensing by these receptors.


The New England Journal of Medicine | 2008

NHERF1 mutations and responsiveness of renal parathyroid hormone.

Zoubida Karim; Bénédicte Gérard; Naziha Bakouh; Rohia Alili; Christine Leroy; Laurent Beck; Caroline Silve; Gabrielle Planelles; Pablo Urena-Torres; Bernard Grandchamp; Gérard Friedlander; Dominique Prié

Impaired renal phosphate reabsorption, as measured by dividing the tubular maximal reabsorption of phosphate by the glomerular filtration rate (TmP/GFR), increases the risks of nephrolithiasis and bone demineralization. Data from animal models suggest that sodium-hydrogen exchanger regulatory factor 1 (NHERF1) controls renal phosphate transport. We sequenced the NHERF1 gene in 158 patients, 94 of whom had either nephrolithiasis or bone demineralization. We identified three distinct mutations in seven patients with a low TmP/GFR value. No patients with normal TmP/GFR values had mutations. The mutants expressed in cultured renal cells increased the generation of cyclic AMP (cAMP) by parathyroid hormone (PTH) and inhibited phosphate transport. These NHERF1 mutations suggest a previously unrecognized cause of renal phosphate loss in humans.


PLOS ONE | 2010

The Phosphate Transporter PiT1 (Slc20a1) Revealed As a New Essential Gene for Mouse Liver Development

Laurent Beck; Christine Leroy; Sarah Beck-Cormier; Anne Forand; Christine Salaün; Nadine Paris; Adeline Bernier; Pablo Urena-Torres; Dominique Prié; Mario Ollero; Laure Coulombel; Gérard Friedlander

Background PiT1 (or SLC20a1) encodes a widely expressed plasma membrane protein functioning as a high-affinity Na+-phosphate (Pi) cotransporter. As such, PiT1 is often considered as a ubiquitous supplier of Pi for cellular needs regardless of the lack of experimental data. Although the importance of PiT1 in mineralizing processes have been demonstrated in vitro in osteoblasts, chondrocytes and vascular smooth muscle cells, in vivo evidence is missing. Methodology/Principal Findings To determine the in vivo function of PiT1, we generated an allelic series of PiT1 mutations in mice by combination of wild-type, hypomorphic and null PiT1 alleles expressing from 100% to 0% of PiT1. In this report we show that complete deletion of PiT1 results in embryonic lethality at E12.5. PiT1-deficient embryos display severely hypoplastic fetal livers and subsequent reduced hematopoiesis resulting in embryonic death from anemia. We show that the anemia is not due to placental, yolk sac or vascular defects and that hematopoietic progenitors have no cell-autonomous defects in proliferation and differentiation. In contrast, mutant fetal livers display decreased proliferation and massive apoptosis. Animals carrying two copies of hypomorphic PiT1 alleles (resulting in 15% PiT1 expression comparing to wild-type animals) survive at birth but are growth-retarded and anemic. The combination of both hypomorphic and null alleles in heterozygous compounds results in late embryonic lethality (E14.5–E16.5) with phenotypic features intermediate between null and hypomorphic mice. In the three mouse lines generated we could not evidence defects in early skeleton formation. Conclusion/Significance This work is the first to illustrate a specific in vivo role for PiT1 by uncovering it as being a critical gene for normal developmental liver growth.


Journal of Biological Chemistry | 2009

Identification of a Novel Function of PiT1 Critical for Cell Proliferation and Independent of Its Phosphate Transport Activity

Laurent Beck; Christine Leroy; Christine Salaün; Germain Margall-Ducos; Chantal Desdouets; Gérard Friedlander

PiT1 is a Na+-phosphate (Pi) cotransporter located at the plasma membrane that enables Pi entry into the cell. Its broad tissue expression pattern has led to the idea that together with the closely related family member PiT2, PiT1 is the ubiquitous supplier of Pi to the cell. Moreover, the role of Pi in phosphorylation reactions, ATP production, DNA structure, and synthesis has led to the view that Pi availability could be an important determinant of cell growth. However, these issues have not been clearly addressed to date, and the role of either Pi or PiT proteins in cell proliferation is unknown. Using RNA interference in HeLa and HepG2 cells, we show that transient or stable PiT1 depletion markedly reduces cell proliferation, delays cell cycle, and impairs mitosis and cytokinesis. In vivo, PiT1 depletion greatly reduced tumor growth when engineered HeLa cells were injected into nude mice. We provide evidence that this effect on cell proliferation is specific to PiT1 and not shared by PiT2 and is not the consequence of impaired membrane Na+-Pi transport. Moreover, we show that modulation of cell proliferation by PiT1 is independent from its transport function because the proliferation of PiT1-depleted cells can be rescued by non-transporting PiT1 mutants. PiT1 depletion leads to the phosphorylation of p38 mitogen-activated protein (MAP) kinase, whereas other MAP kinases and downstream targets of mammalian target of rapamycin (mTOR) remain unaffected. This study is the first to describe the effects of a Pi transporter in cell proliferation, tumor growth, and cell signaling.


Journal of Biological Chemistry | 2010

Identification of a novel transport-independent function of PiT1/SLC20A1 in the regulation of TNF-induced apoptosis

Christine Salaün; Christine Leroy; Alice Rousseau; Valérie Boitez; Laurent Beck; Gérard Friedlander

PiT1/SLC20A1 is a sodium-dependent Pi transporter expressed by most mammalian cells. Interestingly, PiT1 transcription has been shown to be up-regulated by the tumor necrosis factor α (TNF), and we have now investigated the possible involvement of PiT1 in TNF-induced apoptosis. We show that PiT1-depleted cells are more sensitive to the proapoptotic activity of TNF (i.e. when the antiapoptotic NFκB pathway is inactivated). These observations were made in the human HeLa cancer cell line either transiently or stably depleted in PiT1 by RNA interference and in immortalized mouse embryonic fibroblasts isolated from PiT1 knock-out embryos. Depletion of the closely related family member PiT2 had no effect on TNF-induced apoptosis, showing that this effect was specific to PiT1. The increased sensitivity of PiT1-depleted cells was evident regardless of the presence or absence of extracellular Pi, suggesting that a defect in Pi uptake was not involved in the observed phenotype. Importantly, we show that the re-expression of a Pi uptake mutant of PiT1 in PiT1−/− mouse embryonic fibroblasts delays apoptosis as efficiently as the WT protein, showing that this function of PiT1 is unrelated to its transport activity. Caspase-8 is more activated in PiT1-depleted cells, and our data reveal that the sustained activation of the MAPK JNK is up-regulated in response to TNF. JNK activity is actually involved in PiT1-depleted cell death because specific JNK inhibitors delay apoptosis.


PLOS ONE | 2012

A New Human NHERF1 Mutation Decreases Renal Phosphate Transporter NPT2a Expression by a PTH-Independent Mechanism

Marie Courbebaisse; Christine Leroy; Naziha Bakouh; Christine Salaün; Laurent Beck; Bernard Grandchamp; Gabrielle Planelles; Randy A. Hall; Gérard Friedlander; Dominique Prié

Background The sodium-hydrogen exchanger regulatory factor 1 (NHERF1) binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH) receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. Methods We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. Results We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A) located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. Conclusions Our results indicate that the PDZ1 domain is critical for NHERF1- NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.


Blood | 2013

EKLF-driven PIT1 expression is critical for mouse erythroid maturation in vivo and in vitro.

Anne Forand; Laurent Beck; Christine Leroy; Alice Rousseau; Valérie Boitez; Isabelle Cohen; Geneviève Courtois; Olivier Hermine; Gérard Friedlander

The PIT1/SLC20A1 protein, a well-described sodium/phosphate cotransporter and retrovirus receptor, has been identified recently as a modular of proliferation and apoptosis in vitro. The targeted deletion of the PIT1 gene in mice revealed a lethal phenotype due to severe anemia attributed to defects in liver development. However, the presence of immature erythroid cells associated with impaired maturation of the globin switch led us to investigate the role of PIT1 in hematopoietic development. In the present study, specific deletion of PIT1 in the hematopoietic system and fetal liver transplantation experiments demonstrated that anemia was associated with an erythroid cell- autonomous defect. Moreover, anemia was not due to RBC destruction but rather to maturation defects. Because Erythroid Krüppel-like Factor (EKLF)-knockout mice showed similar maturation defects, we investigated the functional link between PIT1 and EKLF. We demonstrated that EKLF increases PIT1 expression during RBC maturation by binding to its promoter in vivo and that shRNA-driven depletion of either PIT1 or EKLF impairs erythroid maturation of G1E cells in vitro, whereas reexpression of PIT1 in EKLF-depleted G1E cells partially restores erythroid maturation. This is the first demonstration of a physiologic involvement of PIT1 in erythroid maturation in vivo.


Biochimica et Biophysica Acta | 1997

POTASSIUM TRANSPORT IN OPOSSUM KIDNEY CELLS : EFFECTS OF NA-SELECTIVE AND K-SELECTIVE IONIZABLE CRYPTANDS, AND OF VALINOMYCIN, FCCP AND NYSTATIN

Alain Loiseau; Christine Leroy; Madeleine Castaing

The effects of two ionizable cryptands, the Na-selective (221)C10 and the K-selective (222)C10, and of valinomycin, FCCP and nystatin on K+ fluxes in opossum kidney (OK) cells have been quantified. The Na,K-ATPase (ouabain-sensitive 86Rb influx) was stimulated by nystatin (> or = 20%), and inhibited by the other ionophores (50-80%), by barium (K-channel blocker) (61%) and by amiloride (Na entry blocker) (34%). The Vmax of the Na,K-ATPase phosphatase activity was unmodified by the ionophores, indicating the absence of direct interaction with the enzyme. The ATPi content was unmodified by the inhibitors and nystatin, but was lowered by (221)C10 (47%), (222)C10 (75%), valinomycin (72%) and FCCP (88%). Amiloride was found to partially remove the inhibition caused by (222)C10 (51%) and valinomycin (49%). Rb efflux was stimulated by nystatin (32%), unmodified by valinomycin, and was inhibited by (221)C10 (19%), (222)C10 (19%) and FCCP (10%). Barium (39%) and amiloride (32%) inhibited this efflux and, in their presence, the nystatin effect persisted, whereas that of the other ionophores vanished. At pH 6.4, the Rb efflux decreased by 14% of its value at pH 7.4, with no additional inhibition by cryptands. Cryptands are shown to inhibit the pH-sensitive K+-conductance, probably by inducing a K+-H+ exchange at the plasma membrane, and by uncoupling oxidative phosphorylation by inducing the entry of K+ and H+ (and possibly Ca2+) ions into the mitochondria.


Blood | 1988

Lineage- and stage-specific adhesion of human hematopoietic progenitor cells to extracellular matrices from marrow fibroblasts

Laure Coulombel; Mh Vuillet; Christine Leroy; Gil Tchernia

Collaboration


Dive into the Christine Leroy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Beck

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Laurent Beck

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Hermine

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Didier Rognan

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Christophe Petrel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Geneviève Courtois

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martial Ruat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christine Salaün

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge