Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine M. Chresta is active.

Publication


Featured researches published by Christine M. Chresta.


Cancer Research | 2010

AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity

Christine M. Chresta; Barry R. Davies; Ian Hickson; Tom Harding; Sabina Cosulich; Susan E. Critchlow; John Vincent; Rebecca Ellston; Darren Jones; Patrizia Sini; Dominic James; Zoe Howard; Phillippa Dudley; Gareth Hughes; Lisa L. Smith; Sharon Maguire; Marc Geoffery Hummersone; Karine Malagu; Keith Menear; Richard Jenkins; Matt Jacobsen; Graeme Cameron Murray Smith; Sylvie Guichard; Martin Pass

The mammalian target of rapamycin (mTOR) kinase forms two multiprotein complexes, mTORC1 and mTORC2, which regulate cell growth, cell survival, and autophagy. Allosteric inhibitors of mTORC1, such as rapamycin, have been extensively used to study tumor cell growth, proliferation, and autophagy but have shown only limited clinical utility. Here, we describe AZD8055, a novel ATP-competitive inhibitor of mTOR kinase activity, with an IC50 of 0.8 nmol/L. AZD8055 showed excellent selectivity (approximately 1,000-fold) against all class I phosphatidylinositol 3-kinase (PI3K) isoforms and other members of the PI3K-like kinase family. Furthermore, there was no significant activity against a panel of 260 kinases at concentrations up to 10 micromol/L. AZD8055 inhibits the phosphorylation of mTORC1 substrates p70S6K and 4E-BP1 as well as phosphorylation of the mTORC2 substrate AKT and downstream proteins. The rapamycin-resistant T37/46 phosphorylation sites on 4E-BP1 were fully inhibited by AZD8055, resulting in significant inhibition of cap-dependent translation. In vitro, AZD8055 potently inhibits proliferation and induces autophagy in H838 and A549 cells. In vivo, AZD8055 induces a dose-dependent pharmacodynamic effect on phosphorylated S6 and phosphorylated AKT at plasma concentrations leading to tumor growth inhibition. Notably, AZD8055 results in significant growth inhibition and/or regression in xenografts, representing a broad range of human tumor types. AZD8055 is currently in phase I clinical trials.


Cancer Research | 2010

Transcriptional Pathway Signatures Predict MEK Addiction and Response to Selumetinib (AZD6244)

Jonathan R. Dry; Sandra Pavey; Christine A. Pratilas; Chris Harbron; Sarah Runswick; Darren Hodgson; Christine M. Chresta; Rose McCormack; Natalie Byrne; Mark Cockerill; Alexander Graham; Garry Beran; Andrew Cassidy; Carolyn Haggerty; Helen J. Brown; Gillian Ellison; Judy Dering; Barry S. Taylor; Mitchell S. Stark; Vanessa F. Bonazzi; Sugandha Ravishankar; Leisl M. Packer; Feng Xing; David B. Solit; Richard S. Finn; Neal Rosen; Nicholas K. Hayward; Tim French; Paul D. Smith

Selumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity. We aimed to enhance predictivity by measuring pathway output through coregulated gene networks displaying differential mRNA expression exclusive to resistant cell subsets and correlated to mutational or dynamic pathway activity. We discovered an 18-gene signature enabling measurement of MEK functional output independent of tumor genotype. Where the MEK pathway is activated but the cells remain resistant to selumetinib, we identified a 13-gene signature that implicates the existence of compensatory signaling from RAS effectors other than PI3K. The ability of these signatures to stratify samples according to functional activation of MEK and/or selumetinib sensitivity was shown in multiple independent melanoma, colon, breast, and lung tumor cell lines and in xenograft models. Furthermore, we were able to measure these signatures in fixed archival melanoma tumor samples using a single RT-qPCR-based test and found intergene correlations and associations with genetic markers of pathway activity to be preserved. These signatures offer useful tools for the study of MEK biology and clinical application of MEK inhibitors, and the novel approaches taken may benefit other targeted therapies.


Molecular Cancer Therapeutics | 2012

Preclinical Pharmacology of AZD5363, an Inhibitor of AKT: Pharmacodynamics, Antitumor Activity, and Correlation of Monotherapy Activity with Genetic Background

Barry R. Davies; Hannah Greenwood; Philippa Dudley; Claire Crafter; De-Hua Yu; Jingchuan Zhang; Jing Li; Beirong Gao; Qunsheng Ji; Juliana Maynard; Sally-Ann Ricketts; Darren Cross; Sabina Cosulich; Christine M. Chresta; Ken Page; James Yates; Clare Lane; Rebecca Watson; Richard William Arthur Luke; Donald J. Ogilvie; Martin Pass

AKT is a key node in the most frequently deregulated signaling network in human cancer. AZD5363, a novel pyrrolopyrimidine-derived compound, inhibited all AKT isoforms with a potency of 10 nmol/L or less and inhibited phosphorylation of AKT substrates in cells with a potency of approximately 0.3 to 0.8 μmol/L. AZD5363 monotherapy inhibited the proliferation of 41 of 182 solid and hematologic tumor cell lines with a potency of 3 μmol/L or less. Cell lines derived from breast cancers showed the highest frequency of sensitivity. There was a significant relationship between the presence of PIK3CA and/or PTEN mutations and sensitivity to AZD5363 and between RAS mutations and resistance. Oral dosing of AZD5363 to nude mice caused dose- and time-dependent reduction of PRAS40, GSK3β, and S6 phosphorylation in BT474c xenografts (PRAS40 phosphorylation EC50 ∼ 0.1 μmol/L total plasma exposure), reversible increases in blood glucose concentrations, and dose-dependent decreases in 2[18F]fluoro-2-deoxy-d-glucose (18F-FDG) uptake in U87-MG xenografts. Chronic oral dosing of AZD5363 caused dose-dependent growth inhibition of xenografts derived from various tumor types, including HER2+ breast cancer models that are resistant to trastuzumab. AZD5363 also significantly enhanced the antitumor activity of docetaxel, lapatinib, and trastuzumab in breast cancer xenografts. It is concluded that AZD5363 is a potent inhibitor of AKT with pharmacodynamic activity in vivo, has potential to treat a range of solid and hematologic tumors as monotherapy or a combinatorial agent, and has potential for personalized medicine based on the genetic status of PIK3CA, PTEN, and RAS. AZD5363 is currently in phase I clinical trials. Mol Cancer Ther; 11(4); 873–87. ©2012 AACR.


Oncogene | 1999

Bcl-2 overexpression results in reciprocal downregulation of Bcl-X(L) and sensitizes human testicular germ cell tumours to chemotherapy-induced apoptosis.

Emma L Arriola; Ana M. Rodriguez-Lopez; John Hickman; Christine M. Chresta

Testicular germ cell tumours are hypersentive to chemotherapy and cell lines derived from these tumours are chemosensitive in vitro. We have previously shown that these cell lines express undetectable levels of the suppressor of apoptosis Bcl-2 and relatively high levels of the apoptosis inducer Bax (Chresta et al., 1996). To determine whether the absence of Bcl-2 in these cell lines makes them highly susceptible to drug-induced apoptosis, Bcl-2 was expressed ectopically in the 833K testicular germ cell tumour cell line. Stable overexpressing clones were isolated and three clones were studied further. Surprisingly, Bcl-2 overexpressing cells were sensitized to chemotherapy-induced apoptosis compared to the parental and vector control cells. Analysis of potential mechanisms of sensitization revealed there was a reciprocal downregulation of the endogenously expressed Bcl-XL in the Bcl-2 overexpressing clones. Downregulation of Bcl-XL to the same extent using antisense oligonucleotides enhanced etoposide-induced apoptosis by twofold. Our results indicate that Bcl-2 and Bcl-XL have different abilities to protect against chemotherapy-induced apoptosis in testicular germ cell tumours. In contrast to findings in some tumour cell types, Bcl-2 did not act as a gatekeeper to prevent entry of p53 to the nucleus.


Cancer Research | 2012

Enhanced Apoptosis and Tumor Growth Suppression Elicited by Combination of MEK (Selumetinib) and mTOR Kinase Inhibitors (AZD8055)

Sarah V. Holt; Armelle Logie; Barry R. Davies; Denis Alferez; Sarah Runswick; Sarah L. Fenton; Christine M. Chresta; Yi Gu; Jingchuan Zhang; Yi-Long Wu; R. Wilkinson; Sylvie Guichard; Paul D. Smith

The mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/AKT signaling pathways interact at multiple nodes in cancer, including at mTOR complexes, suggesting an increased likelihood of redundancy and innate resistance to any therapeutic effects of single pathway inhibition. In this study, we investigated the therapeutic effects of combining the MAPK extracellular signal-regulated kinase (MEK)1/2 inhibitor selumetinib (AZD6244) with the dual mTORC1 and mTORC2 inhibitor (AZD8055). Concurrent dosing in nude mouse xenograft models of human lung adenocarcinoma (non-small cell lung cancers) and colorectal carcinoma was well tolerated and produced increased antitumor efficacy relative to the respective monotherapies. Pharmacodynamic analysis documented reciprocal pathway inhibition associated with increased apoptosis and Bim expression in tumor tissue from the combination group, where key genes such as DUSP6 that are under MEK functional control were also modulated. Our work offers a strong rationale to combine selumetinib and AZD8055 in clinical trials as an attractive therapeutic strategy.


Autophagy | 2010

Simultaneous inhibition of mTORC1 and mTORC2 by mTOR kinase inhibitor AZD8055 induces autophagy and cell death in cancer cells.

Patrizia Sini; Dominic James; Christine M. Chresta; Sylvie Guichard

mTOR is a major biological switch, coordinating an adequate response to changes in energy uptake (amino acids, glucose), growth signals (hormones, growth factors) and environmental stress. mTOR kinase is highly conserved through evolution from yeast to man and in both cases, controls autophagy and cellular translation in response to nutrient stress. mTOR kinase is the catalytic component of two distinct multiprotein complexes called mTORC1 and mTORC2. In addition to mTOR, mTORC1 contains Raptor, mLST8 and PRAS40. mTORC2 contains mTOR, Rictor, mSIN1 and Protor-1. mTORC1 activates p70S6K, which in turn phosphorylates the ribosomal protein S6 and 4E-BP1, both involved in protein translation. mTORC2 activates AKT directly by phosphorylating Serine 473. pAKT(S473) phosphorylates TSC2 (tuberin) and inactivates it, preventing its association with TSC1 (hamartin) and the inhibition of Rheb, an activator of mTOR. pAKT also phosphorylates PRAS40, releasing it from the mTORC1 complex, increasing its kinase activity. Finally, AKT regulates FOXO3 phosphorylation, sequestering it in the cytosol in an inactive state.


Nature Medicine | 1996

Oddball p53 in testicular tumors

Christine M. Chresta; John Hickman

Elevated levels of wild-type p53 in testicular tumors may contribute to their sensitivity to DNA damaging drugs and explain their high cure rate (pages 804–810).


Cancer Chemotherapy and Pharmacology | 1992

Potentiation of etoposide-induced cytotoxicity and DNA damage in CCRF-CEM cells by pretreatment with non-cytotoxic concentrations of arabinosyl cytosine

Christine M. Chresta; Raymond Hicks; John A. Hartley; Robert L. Souhami

SummaryPretreatment of the human lymphoblastoid cell line CCRF-CEM with 0.02 μm arabinosyl cytosine (ara C) enhances both the cytotoxic and the DNA-damaging effects of etoposide. This concentration of ara C is itself non-cytotoxic and results in no detectable DNA damage as measured by alkaline elution. Ara C pretreatment results in the synchronisation of cells, a 24-h pretreatment resulting in the accumulation of cells in the early S phase. The sensitivity of cells to etoposide-induced cytotoxicity was increased 2.5 times and DNA damage was enhanced 1.66 times by this pretreatment. Maximal potentiation of etoposide-induced DNA damage (2.06-fold increase) was observed after 48 h continuous treatment with ara C, but no further enhancement of cytotoxicity occurred. Cell-cycle analysis demonstrated that 48 h ara C treatment resulted in the accumulation of cells in the late S/G2M phase. Cells returned to a normal cell-cycle distribution within 24 h of the removal of ara C, and the potentiation of etoposide activity was then reduced to a 1.3- to 1.4-fold level. DNA damage induced by etoposide following ara C pretreatment was qualitatively identical to that produced by etoposide alone, suggesting a mechanism involving topoisomerase II. To investigate this possibility, we measured topoisomerase II protein levels by immunoblotting. Measurement of topoisomerase II levels in whole-cell lysates of ara C-pretreated cells showed a 3- to 5-fold increase in topoisomerase levels relative to total protein content. This suggests that elevated enzyme levels may be responsible for the increased sensitivity of ara C-pretreated cells to etoposide.


Journal of Clinical Oncology | 2012

Use of colorectal cancer subtypes identified through iterative clustering to predict response to therapy.

Andreas Schlicker; Garry Beran; Christine M. Chresta; Gael McWalter; Alison Pritchard; Susie Weston; Sarah Runswick; Sara Davenport; Kerry Heathcote; Denis Alferez Castro; George Orphanides; Tim French; Lodewyk F. A. Wessels

482 Background: Colorectal cancer (CRC) is generally stratified based on genetic and epigenetic features, such as KRAS mutation and microsatellite instability status. In order to facilitate the development of new targeted drugs and treatment regimens, it is important to redefine CRC at the molecular level by identifying subtypes that are relevant for response to targeted therapy. METHODS We applied a new unsupervised approach for iteratively stratifying tumor samples using genome-wide mRNA expression data. The resulting gene expression signatures were used to subtype CRC cell line panels and publicly available CRC tumor datasets. We employed pharmacological data on the cell line panels to link the subtypes to therapy response. RESULTS Starting from a gene expression dataset of 63 CRC tumor samples, we employed non-negative matrix factorization (NMF) and identified two dominant CRC subtypes. In agreement with previously published results, one of the types showed a mesenchymal and the other an epithelial-like gene expression pattern. In a second step, we applied NMF on these two dominant subtypes and further stratified them into two and three subtypes, respectively. The resulting five CRC subtypes show many differences, most notably activation of specific signaling pathways. Importantly, we recovered these five subtypes in several independent, publicly available CRC datasets. This strongly suggests that the signatures capture disease-relevant features of CRC. Furthermore, we found that the different subtypes corresponded to different cell lines in a panel of CRC cell lines. The clustered CRC cell lines displayed differential responses to a number of targeted compounds, indicating that the new CRC clusters may represent disease subtypes that of differential drug sensitivity. CONCLUSIONS The CRC subtypes discovered using our new method offer new insights into the functional and molecular processes driving CRC. Furthermore, the evidence suggests that these subtypes may differ in activated pathway status and the response to some targeted inhibitors, indicating that targeting pathways conserved in these subtypes may provide new drug discovery opportunities.


Cancer Research | 1996

Hypersensitivity of Human Testicular Tumors to Etoposide-induced Apoptosis Is Associated with Functional p53 and a High Bax:Bcl-2 Ratio

Christine M. Chresta; John R. W. Masters; John Hickman

Collaboration


Dive into the Christine M. Chresta's collaboration.

Top Co-Authors

Avatar

John Hickman

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Dive

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Helen M. Beere

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Smith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anthony D. Whetton

Manchester Academic Health Science Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge