Christine M. Misquitta
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine M. Misquitta.
Genome Biology | 2007
Matthew M. Fagnani; Yoseph Barash; Joanna Y. Ip; Christine M. Misquitta; Qun Pan; Arneet L. Saltzman; Ofer Shai; Leo J. Lee; Aviad Rozenhek; Naveed Mohammad; Sandrine Willaime-Morawek; Tomas Babak; Wen Zhang; Timothy R. Hughes; Derek van der Kooy; Brendan J. Frey; Benjamin J. Blencowe
BackgroundAlternative splicing (AS) functions to expand proteomic complexity and plays numerous important roles in gene regulation. However, the extent to which AS coordinates functions in a cell and tissue type specific manner is not known. Moreover, the sequence code that underlies cell and tissue type specific regulation of AS is poorly understood.ResultsUsing quantitative AS microarray profiling, we have identified a large number of widely expressed mouse genes that contain single or coordinated pairs of alternative exons that are spliced in a tissue regulated fashion. The majority of these AS events display differential regulation in central nervous system (CNS) tissues. Approximately half of the corresponding genes have neural specific functions and operate in common processes and interconnected pathways. Differential regulation of AS in the CNS tissues correlates strongly with a set of mostly new motifs that are predominantly located in the intron and constitutive exon sequences neighboring CNS-regulated alternative exons. Different subsets of these motifs are correlated with either increased inclusion or increased exclusion of alternative exons in CNS tissues, relative to the other profiled tissues.ConclusionOur findings provide new evidence that specific cellular processes in the mammalian CNS are coordinated at the level of AS, and that a complex splicing code underlies CNS specific AS regulation. This code appears to comprise many new motifs, some of which are located in the constitutive exons neighboring regulated alternative exons. These data provide a basis for understanding the molecular mechanisms by which the tissue specific functions of widely expressed genes are coordinated at the level of AS.
Molecular and Cellular Biochemistry | 2001
Christine M. Misquitta; Vimala R. Iyer; Eva S. Werstiuk; Ashok K. Grover
Knowledge of transcription and translation has advanced our understanding of cardiac diseases. Here, we present the hypothesis that the stability of mRNA mediated by the 3′-untranslated region (3′-UTR) plays a role in changing gene expression in cardiovascular pathophysiology. Several proteins that bind to sequences in the 3′-UTR of mRNA of cardiovascular targets have been identified. The affected mRNAs include those encoding β-adrenergic receptors, angiotensin II receptors, endothelial and inducible nitric oxide synthases, cyclooxygenase, endothelial growth factor, tissue necrosis factor (TNF-α), globin, elastin, proteins involved in cell cycle regulation, oncogenes, cytokines and lymphokines. We discuss: (a) the types of 3′-UTR sequences involved in mRNA stability, (b) AUF1, HuR and other proteins that bind to these sequences to either stabilize or destabilize the target mRNAs, and (c) the potential role of the 3′-UTR mediated mRNA stability in heart failure, myocardial infarction and hypertension. We hope that these concepts will aid in better understanding cardiovascular diseases and in developing new therapies.
Molecular and Cellular Biochemistry | 2000
Islam Khan; Vicky Sandhu; Christine M. Misquitta; Ashok K. Grover
Endothelium from rat aorta expresses sarco/endoplasmic reticulum Ca2+(SERCA) pump gene SERCA3 where as the smooth muscle expresses SERCA2. This has led to the postulate that vascular endothelium expresses SERCA3. To test this postulate, we examined the SERCA2 and SERCA3 mRNA expression in endothelium and smooth muscle dissected from coronary artery, coronary vein, aorta and vena cava of pig. Smooth muscle from all arteries and veins expressed only the SERCA2 mRNA. Endothelium from coronary artery, coronary vein and aorta expressed both SERCA2 and SERCA3 mRNA but the endothelium from vena cava did not express SERCA3 mRNA although it expressed SERCA2. These observations support the postulate that vascular endothelium expresses SERCA3 but the affirmation is equivocal because vena cava endothelium does not express SERCA3. (Mol Cell Biochem 000: 000-000, 1999)
Molecular and Cellular Biochemistry | 1999
Ashok K. Grover; Sue E. Samson; Christine M. Misquitta; Adel B. Elmoselhi
Reactive oxygen species (ROS, free radicals) produced during cardiac ischemia and reperfusion can damage the contractile functions of arteries. The sarcoplasmic reticulum (SR) Ca2+ pump in coronary artery smooth muscle is very sensitive to ROS. Here we show that contractions of de-endothelialized rings from porcine left coronary artery produced by the hormone Angiotensin II and by the SR Ca2+ pump inhibitors cyclopiazonic acid and thapsigargin correlate negatively with the tissue weight. In contrast, the contractions due to membrane depolarization by high KCl correlate positively. Peroxide also produces a small contraction which correlates negatively with the tissue weight. When artery rings are treated with peroxide and washed, their ability to contract with Angiotensin II, cyclopiazonic acid and thapsigargin decreases. Thus, the SR Ca2+ pump may play a more important role in the contractility of the smaller segments of the coronary artery than in the larger segments. These results are consistent with the hypothesis that ROS which damage the SR Ca2+ pump affect the contractile function of the distal segments more adversely than of the proximal segments.
Molecular and Cellular Biochemistry | 1979
Christine M. Misquitta; Sue E. Samson; Ashok K. Grover
Densities of sarcoplasmic reticulum (SR) Ca2+-pump were compared in proximal and distal segments of pig left coronary artery using two biochemical methods: acylphosphate formation and immunoreactivity in Western blots, and a functional assay based on contraction to SR Ca2+-pump inhibitors. In the microsomes prepared from smooth muscle, the level of the 115 kDa SR Ca2+-pump acylphosphate was 7.1 ± 0.3 -fold greater in distal than in proximal segments. Similarly in Western blots using these microsomes, the reactivity of the 115 kDa band to an anti-SR Ca2+-pump antibody was 5.3 ± 0.8 -fold greater in distal than in proximal segments. Endothelium free coronary artery rings contracted to the SR Ca2+-pump inhibitors Cyclopiazonic acid (CPA, EC50 = 0.19 ± 0.06 μM) and thapsigargin (EC50 = 0.0095 ± 0.0035 μM). With 10 μM CPA, the force of contraction per tissue wet weight was 4.2 ± 0.5-fold greater in distal than in proximal rings, and with 1 μM thapsigargin it was 4.0 ± 1.0 -fold greater. The contractions produced by 60 mM KCl were used as a control. In contrast to the CPA and thapsigargin, the force per mg tissue weight produced by 60 mM KCl did not differ significantly between the proximal and distal segments. Thus, the results from the two biochemical methods and those from the contractility data were all consistent with the smooth muscle in the distal segments of the coronary artery containing a higher density of the SR Ca2+-pump than the proximal segments.
Molecular Cell | 2004
Qun Pan; Ofer Shai; Christine M. Misquitta; Wen Zhang; Arneet L. Saltzman; Naveed Mohammad; Tomas Babak; Henry Siu; Timothy R. Hughes; Quaid Morris; Brendan J. Frey; Benjamin J. Blencowe
Genes & Development | 2006
Qun Pan; Arneet L. Saltzman; Yoon Ki Kim; Christine M. Misquitta; Ofer Shai; Lynne E. Maquat; Brendan J. Frey; Benjamin J. Blencowe
Cell Calcium | 1999
Christine M. Misquitta; D.P. Mack; Ashok K. Grover
American Journal of Physiology-cell Physiology | 1997
Ashok K. Grover; Sue E. Samson; Christine M. Misquitta
Cell Calcium | 2006
Christine M. Misquitta; Tao Chen; Ashok K. Grover