Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Marosi is active.

Publication


Featured researches published by Christine Marosi.


Lancet Oncology | 2009

Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial.

Roger Stupp; Monika E. Hegi; Warren P. Mason; Martin J. van den Bent; Martin J. B. Taphoorn; Robert C. Janzer; Samuel K. Ludwin; Anouk Allgeier; Barbara Fisher; Karl Belanger; Peter Hau; Alba A. Brandes; Johanna M.M. Gijtenbeek; Christine Marosi; Charles J. Vecht; Karima Mokhtari; Pieter Wesseling; Salvador Villà; Elizabeth Eisenhauer; Thierry Gorlia; Michael Weller; Denis Lacombe; J. Gregory Cairncross; René-Olivier Mirimanoff

BACKGROUND In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING EORTC, NCIC, Nélia and Amadeo Barletta Foundation, Schering-Plough.


Lancet Oncology | 2012

Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial

Annika Malmström; Bjørn Henning Grønberg; Christine Marosi; Roger Stupp; Didier Frappaz; Henrik Schultz; Ufuk Abacioglu; Björn Tavelin; Benoit Lhermitte; Monika E. Hegi; Johan Rosell; Roger Henriksson

BACKGROUND Most patients with glioblastoma are older than 60 years, but treatment guidelines are based on trials in patients aged only up to 70 years. We did a randomised trial to assess the optimum palliative treatment in patients aged 60 years and older with glioblastoma. METHODS Patients with newly diagnosed glioblastoma were recruited from Austria, Denmark, France, Norway, Sweden, Switzerland, and Turkey. They were assigned by a computer-generated randomisation schedule, stratified by centre, to receive temozolomide (200 mg/m(2) on days 1-5 of every 28 days for up to six cycles), hypofractionated radiotherapy (34·0 Gy administered in 3·4 Gy fractions over 2 weeks), or standard radiotherapy (60·0 Gy administered in 2·0 Gy fractions over 6 weeks). Patients and study staff were aware of treatment assignment. The primary endpoint was overall survival. Analyses were done by intention to treat. This trial is registered, number ISRCTN81470623. FINDINGS 342 patients were enrolled, of whom 291 were randomised across three treatment groups (temozolomide n=93, hypofractionated radiotherapy n=98, standard radiotherapy n=100) and 51 of whom were randomised across only two groups (temozolomide n=26, hypofractionated radiotherapy n=25). In the three-group randomisation, in comparison with standard radiotherapy, median overall survival was significantly longer with temozolomide (8·3 months [95% CI 7·1-9·5; n=93] vs 6·0 months [95% CI 5·1-6·8; n=100], hazard ratio [HR] 0·70; 95% CI 0·52-0·93, p=0·01), but not with hypofractionated radiotherapy (7·5 months [6·5-8·6; n=98], HR 0·85 [0·64-1·12], p=0·24). For all patients who received temozolomide or hypofractionated radiotherapy (n=242) overall survival was similar (8·4 months [7·3-9·4; n=119] vs 7·4 months [6·4-8·4; n=123]; HR 0·82, 95% CI 0·63-1·06; p=0·12). For age older than 70 years, survival was better with temozolomide and with hypofractionated radiotherapy than with standard radiotherapy (HR for temozolomide vs standard radiotherapy 0·35 [0·21-0·56], p<0·0001; HR for hypofractionated vs standard radiotherapy 0·59 [95% CI 0·37-0·93], p=0·02). Patients treated with temozolomide who had tumour MGMT promoter methylation had significantly longer survival than those without MGMT promoter methylation (9·7 months [95% CI 8·0-11·4] vs 6·8 months [5·9-7·7]; HR 0·56 [95% CI 0·34-0·93], p=0·02), but no difference was noted between those with methylated and unmethylated MGMT promoter treated with radiotherapy (HR 0·97 [95% CI 0·69-1·38]; p=0·81). As expected, the most common grade 3-4 adverse events in the temozolomide group were neutropenia (n=12) and thrombocytopenia (n=18). Grade 3-5 infections in all randomisation groups were reported in 18 patients. Two patients had fatal infections (one in the temozolomide group and one in the standard radiotherapy group) and one in the temozolomide group with grade 2 thrombocytopenia died from complications after surgery for a gastrointestinal bleed. INTERPRETATION Standard radiotherapy was associated with poor outcomes, especially in patients older than 70 years. Both temozolomide and hypofractionated radiotherapy should be considered as standard treatment options in elderly patients with glioblastoma. MGMT promoter methylation status might be a useful predictive marker for benefit from temozolomide. FUNDING Merck, Lions Cancer Research Foundation, University of Umeå, and the Swedish Cancer Society.


Blood | 2010

Prediction of venous thromboembolism in cancer patients

Cihan Ay; Daniela Dunkler; Christine Marosi; Alexandru-Laurentiu Chiriac; Rainer Vormittag; Ralph Simanek; Peter Quehenberger; Christoph C. Zielinski; Ingrid Pabinger

The risk of venous thromboembolism (VTE) is increased in cancer patients. To improve prediction of VTE in cancer patients, we performed a prospective and observational cohort study of patients with newly diagnosed cancer or progression of disease after remission. A previously developed risk scoring model for prediction of VTE that included clinical (tumor entity and body mass index) and laboratory (hemoglobin level and thrombocyte and leukocyte count) parameters was expanded by incorporating 2 biomarkers, soluble P-selectin, and D-Dimer. Of 819 patients 61 (7.4%) experienced VTE during a median follow-up of 656 days. The cumulative VTE probability in the original risk model after 6 months was 17.7% in patients with the highest risk score (≥ 3, n = 93), 9.6% in those with score 2 (n = 221), 3.8% in those with score 1 (n = 229), and 1.5% in those with score 0 (n = 276). In the expanded risk model, the cumulative VTE probability after 6 months in patients with the highest score (≥ 5, n = 30) was 35.0% and 10.3% in those with an intermediate score (score 3, n = 130) as opposed to only 1.0% in patients with score 0 (n = 200); the hazard ratio of patients with the highest compared with those with the lowest score was 25.9 (8.0-84.6). Clinical and standard laboratory parameters with addition of biomarkers enable prediction of VTE and allow identification of cancer patients at high or low risk of VTE.


Blood | 2008

High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients - results from the Vienna Cancer and Thrombosis Study (CATS)

Cihan Ay; Ralph Simanek; Rainer Vormittag; Daniela Dunkler; Guelay Alguel; Silvia Koder; Gabriela Kornek; Christine Marosi; Oswald Wagner; Christoph C. Zielinski; Ingrid Pabinger

Cancer patients are at high risk for venous thromboembolism (VTE). Laboratory parameters with a predictive value for VTE could help stratify patients into high- or low-risk groups. The cell adhesion molecule P-selectin was recently identified as risk factor for VTE. To investigate soluble P-selectin (sP-selectin) in cancer patients as risk predictor for VTE, we performed a prospective cohort study of 687 cancer patients and followed them for a median (IQR) of 415 (221-722) days. Main tumor entities were malignancies of the breast (n = 125), lung (n = 86), gastrointestinal tract (n = 130), pancreas (n = 42), kidney (n = 19), prostate (n = 72), and brain (n = 80); 91 had hematologic malignancies; 42 had other tumors. VTE occurred in 44 (6.4%) patients. In multivariable analysis, elevated sP-selectin (cutoff level, 53.1 ng/mL, 75th percentile of study population) was a statistically significant risk factor for VTE after adjustment for age, sex, surgery, chemotherapy, and radiotherapy (hazard ratio = 2.6, 95% confidence interval, 1.4-4.9, P = .003). The cumulative probability of VTE after 6 months was 11.9% in patients with sP-selectin above and 3.7% in those below the 75th percentile (P = .002). High sP-selectin plasma levels independently predict VTE in cancer patients. Measurement of sP-selectin at diagnosis of cancer could help identify patients at increased risk for VTE.


Brain Pathology | 2008

Anti-O6-methylguanine-methyltransferase (MGMT) immunohistochemistry in glioblastoma multiforme: observer variability and lack of association with patient survival impede its use as clinical biomarker.

Matthias Preusser; Robert C. Janzer; Jörg Felsberg; Guido Reifenberger; Marie-France Hamou; Annie-Claire Diserens; Roger Stupp; Thierry Gorlia; Christine Marosi; Harald Heinzl; Johannes A. Hainfellner; Monika E. Hegi

Silencing of O6‐methylguanine‐DNA methyltransferase (MGMT) protein expression because of MGMT gene promoter hypermethylation is considered to be associated with postoperative chemoradiotherapy benefits in glioblastoma multiforme (GBM) patients. The objective of this study was to clarify the usability of MGMT immunohistochemistry (IHC) as a clinical biomarker.


Neuro-oncology | 2015

Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma

Anna Sophie Berghoff; Barbara Kiesel; Georg Widhalm; Orsolya Rajky; Gerda Ricken; Adelheid Wöhrer; Karin Dieckmann; Martin Filipits; Anita Brandstetter; Michael Weller; Sebastian Kurscheid; Monika E. Hegi; Christoph Zielinski; Christine Marosi; Johannes A. Hainfellner; Matthias Preusser; Wolfgang Wick

BACKGROUND Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. METHODS We performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. RESULTS Diffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. CONCLUSION TILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastoma.


Journal of Neuro-oncology | 2005

P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy

Stefan Oberndorfer; Maria Piribauer; Christine Marosi; Heinz Lahrmann; Peter Hitzenberger; Wolfgang Grisold

SummaryThe co-administration of antiepileptic drugs (AED) and chemotherapeutic agents in patients with glioblastoma multiforme (GBM) is common. Interactions of chemotherapeutic agents and AED have not been investigated sufficiently. The purpose of this study is to evaluate the effects of enzyme inducing (EI-AED) and non-EI-AED in patients with GBM treated with standard chemotherapeutic agents on survival and haematotoxicity. One hundred and sixty eight glioblastoma patients with standard treatment including surgery, radiotherapy and chemotherapy were retrospectively analysed. Patients were separated into three groups: Group A patients without AED (n=88), Group B patients with EI-AED (n=43), and Group C patients with non-EI-AED (n=37). CCNU was the most frequently used first-line drug in all three groups (Group A: 77%; Group B: 81%; Group C: 78%). Second line treatment, mainly temozolomide, was applicated in 58 of patients and third-line treatment in 9. Carbamazepine was the most frequently administered AED in Group B (81%) and valproic acid in Group C (85%). For statistical analysis, only patients with CCNU first line treatment were calculated. A significant difference regarding survival was detected between Group B (10.8 month) and Group C (13.9 month), as well as increased haematotoxicity for Group C. These results indicate that AED influence the pharmacokinetics of chemotherapeutic drugs in patients with GBM. Valproic acid might be responsible for increasing haematotoxicity. Whether the difference regarding survival between Group B and Group C is due to a decrease of efficacy of chemotherapeutic agents by EI-AED, or due to increased efficacy of chemotherapeutic agents caused by the enzyme inhibiting properties of valproic acid, has to be evaluated in future studies.


Journal of Thrombosis and Haemostasis | 2012

Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients.

Johannes Thaler; Cihan Ay; Nigel Mackman; R. M. Bertina; Alexandra Kaider; Christine Marosi; Nigel S. Key; D. A. Barcel; Werner Scheithauer; Gabriela Kornek; Christoph Zielinski; Ingrid Pabinger

Summary.  Background:  Tissue factor (TF) expression by tumors contributes to tumor growth. Release of TF‐positive microparticles (MPs) may contribute to venous thromboembolism (VTE).


Acta Neuropathologica | 2012

Brain metastases: pathobiology and emerging targeted therapies

Matthias Preusser; David Capper; Aysegül Ilhan-Mutlu; Anna Sophie Berghoff; Peter Birner; Rupert Bartsch; Christine Marosi; Christoph Zielinski; Minesh P. Mehta; Frank Winkler; Wolfgang Wick; Andreas von Deimling

Brain metastases (BM) are common in cancer patients and are associated with high morbidity and poor prognosis, even after intensive multimodal therapy including resection, radiotherapy (stereotactic radiosurgery or whole brain radiotherapy) and chemotherapy. However, advances in the understanding of the pathobiology of BM and the development of molecular targeted agents hold promise for improved prophylaxis and therapy of BM. Here we provide a comprehensive review of the current concepts on mechanisms of the brain-metastatic cascade involving hematogenous dissemination of tumor cells, attachment to microvessel endothelial cells, extravasation into the brain, interaction with the local microenvironment, angiogenesis and intraparenchymal proliferation. Transendothelial migration depends on adhesion molecules such as integrins, selectins and chemokines. Tumor cells invade the brain by degrading extracellular matrix components using heparanase and matrix metalloproteinases. Astrocytes and microglial cells exert not only anti-, but also pro-neoplastic effects on brain-invading tumor cells. Some tumor types (e.g. melanoma) show prominent cooption of preexisting vasculature, while other tumor types (e.g. lung cancer) tend to show early angiogenesis after brain invasion. In this article we also critically summarize the data on currently studied targeted therapeutics in BM especially in the context of recent preclinical data. The most promising agents for BM patients include anti-angiogenic drugs, inhibitors of v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) for BRAF V600E mutated melanoma and inhibitors of epithelial growth factor receptor for non-small cell lung cancer. Molecular analysis of the BRAF V600E status of melanoma BM using DNA-based methods or immunohistochemistry may soon enter the routine neuropathological practice.


Brain Pathology | 2006

Vascular Patterns in Glioblastoma Influence Clinical Outcome and Associate with Variable Expression of Angiogenic Proteins: Evidence for Distinct Angiogenic Subtypes

Peter Birner; Maria Piribauer; Ingeborg Fischer; Brigitte Gatterbauer; Christine Marosi; Peter F. Ambros; Inge M. Ambros; Markus Bredel; Georg Oberhuber; Karl Rössler; Herbert Budka; Adrian L. Harris; Johannes A. Hainfellner

No data exist on angiogenic patterns and their prognostic impact in human glioblastoma. Such data are relevant for translation of antiangiogenic therapies into clinical applications. Using immunohistochemistry for CD34, we assessed vascular patterns in 114 primary glioblastomas. Vascular patterns comprised unevenly distributed glomeruloid/garland‐like/clustered bizarre vascular formations and evenly distributed delicate capillary‐like microvessels (“classic” vascular pattern). The combination of low content of bizarre vascular formations and prominent classic vascular pattern (n=29) was an independent factor for longer survival (p= 0.006, Cox regression), as well as postoperative high Karnofsky performance status (p=0.005). In patients with a prominent classic vascular pattern, there was no difference of MIB1 labeling index whereas microvessel density and apoptotic index (TUNEL) were significantly higher as compared to all other patients (p<0.05). In addition, diffuse expression of hypoxia‐inducible factor (HIF)‐1α and strong expression of vascular endothelial growth factor were more common (p<0.05, Chi‐square test). FISH revealed loss of chromosomes 1p and 19q only in 1/7 long‐time survivors with classic pattern. We conclude that vascular patterns in primary glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins. Our findings denote for the first time distinct angiogenic subtypes of human glioblastoma which may prove relevant for anti‐angiogenic therapy approaches.

Collaboration


Dive into the Christine Marosi's collaboration.

Top Co-Authors

Avatar

Matthias Preusser

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Dieckmann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Georg Widhalm

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Anna Sophie Berghoff

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Daniela Prayer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Adelheid Wöhrer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Peter Birner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Ingrid Pabinger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Christoph Zielinski

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge