Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Moisan is active.

Publication


Featured researches published by Christine Moisan.


Respiratory Physiology & Neurobiology | 2010

Effect of exercise training on respiration and reactive oxygen species metabolism in eel red muscle

Hélène Mortelette; Aline Amérand; Philippe Sébert; Marc Belhomme; Patrick Calvès; Christine Moisan

This paper deals with the effects of exercise training on oxygen consumption (MO(2)) and ROS metabolism in the red muscle of trained and untrained female silver eels. Their critical swimming speed (U(crit)) was determined before and after a 4-day training (10h of swimming at 70% of U(crit) and 14 h at 50%, every day). The U(crit) of trained eels increased significantly (by about 7%). The in vitro MO(2) and ROS production by the red fibres were higher (not significant) in trained than in untrained eels, but the ROS production/MO(2) ratio was alike in both groups. The antioxidant-enzyme activities and lipoperoxidation index in trained eels were both lower than those of the untrained ones. These biochemical changes related to the increase in U(crit) suggest that such a training session could maintained or even increased aerobic power of the red muscle without deleterious impact by ROS. These regulations could play a role in the eels swimming performance efficiency.


Redox Report | 2013

Effect of induced mild hypothermia on two pro-inflammatory cytokines and oxidative parameters during experimental acute sepsis

Karelle Léon; Christine Moisan; Aline Amérand; Gwladys Poupon; Erwan L'Her

Abstract This study aimed to determine the effect of induced mild hypothermia (34°C) on the production of two cytokines (interleukin (IL-6) and tumor necrosis factor (TNF)alpha) and reactive nitrogen and oxygen species in plasma and the heart of acutely septic rats. After anesthesia and in conditions of normothermia (38°C) or mild hypothermia (34°C), acute sepsis was induced by cecal ligation and perforation. For each temperature three groups were formed: (1) baseline (blood sample collected at T0 hour), (2) sham (blood sample at T4 hours) and (3) septic (blood sample at T4 hours). At either temperature sepsis induced a significant increase in plasma IL-6, TNF-alpha and HO• concentration, compared with the sham groups (P ≤ 0.016). Compared with the normothermic septic group, septic rats exposed to mild hypothermia showed a mild decrease in TNF-alpha concentration (104 ± 50 pg/ml vs. 215 ± 114 pg/ml; P > 0.05) and a significant decrease in IL-6 (1131 ± 402 pg/ml vs. 2494 ± 691 pg/ml, P = 0.038). At either temperature sepsis induced no enhancement within the heart of lipoperoxidation (malondialdehyde content) or antioxidant activities (superoxide dismutase and catalase). In conclusion, during acute sepsis, induced mild hypothermia appears to reduce some pro-inflammatory and oxidative responses. This may, in part, explain the beneficial effect of hypothermia on survival duration of septic rats.


Redox Report | 2015

Effect of exercise training on oxidative stress and mitochondrial function in rat heart and gastrocnemius muscle

Firas Farhat; Julie Dupas; Aline Amérand; Christelle Goanvec; Annie Feray; Bernard Simon; Nathalie Guegueniat; Christine Moisan

Abstract Objective This study aimed to explore the effect of endurance training on oxidative parameters and mitochondrial function in gastrocnemius and heart muscle. Methods Male Wistar rats were trained by running for 6 weeks. In vitro measurements of the rates of hydroxyl radical (•OH) production, oxygen consumption (in either the absence, basal rate (V0), or the presence, maximal rate (Vmax), of adenosine diphosphate), and adenosine triphosphate (ATP) production were made simultaneously in permeabilized fibers. The mitochondrial function was explored after exposure or non-exposure to an in vitro generator system of reactive oxygen species (ROS). Results Vmax was not affected by training, but V0 decreased. In conditions of maximal mitochondrial functioning, an increase in ATP rate and a decrease in •OH production occurred simultaneously. In vitro ROS exposure disturbed mitochondrial function, but training modified the vulnerability of Vmax and ATP rate to ROS in different ways. Discussion We hypothesize that the part of Vmax devoted to proton leakage was decreased in trained rats, consequently improving ATP synthesis. The data suggest that, after training, there is more efficient use of electrons in respiratory chain energy production, rather than a greater ROS scavenging capacity.


Respiratory Physiology & Neurobiology | 2011

In vitro aerobic and anaerobic muscle capacities in the European eel, Anguilla anguilla: effects of a swimming session.

Philippe Sébert; Hélène Mortelette; Jonathan Nicolas; Aline Amérand; Marc Belhomme; Christine Moisan

In order to have a general view of metabolic requirements during swimming, in vitro aerobic and anaerobic fluxes were measured in red and white muscles from silver eels and yellow eels which differ in activity levels and nutritional states. These measurements were performed in control eels and after a 4 day swimming session (70% U(crit) in yellow eels, 80% U(crit) in silver eels). A swimming session significantly increases U(crit) from 12% to 18%, depending on the stage, with a significantly higher in vitro energy cost during the yellow stage at the muscle level. In vitro, the swimming session brings about a gain in anaerobic capacities rather than in aerobic ones. Some in vivo hypotheses are proposed.


Respiratory Physiology & Neurobiology | 2017

Silvering and swimming effects on aerobic metabolism and reactive oxygen species in the European eel

Aline Amérand; Hélène Mortelette; Marc Belhomme; Christine Moisan

Silvering, the last metamorphosis in the eel life cycle induces morphological and physiological modifications in yellow eels (sedentary stage). It pre-adapts them to cope with the extreme conditions they will encounter during their 6000-km spawning migration. A previous study showed that silver eels are able to cope with reactive oxygen species (ROS) over-production linked to an increase in aerobic metabolism during sustained swimming, but the question remains as to whether this mechanism is associated with silvering. A sustained swimming session decreased red muscle in vitro mitochondrial oxygen consumption (MO2) but increased ROS production in both eel stages. The swimming exercise used here was perhaps too intense to induce a stimulation of mitochondrial function or biogenesis even when antioxidant enzyme activities were unchanged. Pro-oxidant/antioxidant imbalance by lipid peroxidation increased in yellow but significantly decreased in silver eels. The silvering process therefore appears to allow a pre-adaptation of red muscle radical metabolism to the demands of spawning migration.


Redox Report | 2017

Gender-dependent differences of mitochondrial function and oxidative stress in rat skeletal muscle at rest and after exercise training

Firas Farhat; Aline Amérand; Bernard Simon; Nathalie Guegueniat; Christine Moisan

ABSTRACT Objective: This study investigated gender-dependent differences of mitochondrial function and sensitivity to in vitro ROS exposure in rat skeletal muscle at rest and after exercise training. Methods: Wistar rats underwent running training for 6 weeks. In vitro measurements of hydroxyl radical production, oxygen consumption (under basal and maximal respiration conditions) and ATP production were made on permeabilized fibers. Mitochondrial function was examined after exposure and non-exposure to an in vitro generator system of reactive oxygen species (ROS). Antioxidant enzyme activities and malondialdehyde (MDA) content were also determined. Results: Compared with sedentary males, females showed a greater resistance of mitochondrial function (oxygen consumption and ATP production) to ROS exposure, and lower MDA content and antioxidant enzyme activities. The training protocol had more beneficial effects in males than females with regard to ROS production and oxidative stress. In contrast to male rats, the susceptibility of mitochondrial function to ROS exposure in trained females was unchanged. Discussion: Exercise training improves mitochondrial function oxidative capacities in both male and female rats, but is more pronounced in males as a result of different mechanisms. The resistance of mitochondrial function to in vitro oxidative stress exposure and the antioxidant responses are gender- and training-dependent, and may be related to the protective effects of estrogen.


Canadian Journal of Physiology and Pharmacology | 2018

Long-term atorvastatin treatment decreases heart maximal oxygen consumption and its vulnerability to in vitro oxidative stress in Watanabe heritable hyperlipidemic rabbit

Florine Tissier; Firas Farhat; Clothilde Philouze; Jean-Claude Desfontis; Romain Didier; Martine Gilard; M. Yassine Mallem; Jacques Mansourati; Christine Moisan; Karine Pichavant-Rafini; Michael Theron; Aline Amérand

Statins are currently used in prevention of cardiovascular diseases in high-risk populations, and could be considered in primary prevention. However, few studies are available on the long-term effects of low doses of statins, especially on mitochondrial function and reactive oxygen species (ROS) metabolism at cardiac level. This study aimed to determine potential effects of a long-term atorvastatin treatment, at low-dose concentration, on the myocardium mitochondrial respiration. Thirty-four Watanabe rabbits were treated or not with atorvastatin (2.5 mg·kg-1·day-1) from the age of 3 to 12 months. Every 3 months, proton leak, basal (V0), and maximal (Vmax) mitochondrial respiration on cardiac permeabilized fibers were measured. Additionally, the vulnerability to ROS, cardiac enzymatic antioxidant defenses, and oxidative damage (lipoperoxidation) were analyzed. Proton leak increased over the duration of the experiment (up to 60% from Vmax at 12 months). Moreover, the statin treatment induced a decrease of Vmax and a decrease of ROS susceptibility of cardiac mitochondria. However, the lipoperoxidation and the antioxidant defenses were not dependent on the presence of statin treatment, or on its duration. This is the first study showing a protective effect of long-term statins treatment against the ROS susceptibility in the cardiac muscle.


Archive | 2009

High Pressure Resistance and Adaptation of European Eels

Philippe Sébert; Aurélie Vettier; Aline Amérand; Christine Moisan


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2007

20.6. Migration of the European eels: a sex-specific aerobic metabolism strategy to join the Sargasso Sea?

Aline Amérand; A. Vettier; P. Sébert; Christine Moisan


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Swimming endurance and reactive oxygen species in silver eel red muscle

Hélène Mortelette; Christine Moisan; Philippe Sébert; Aline Amérand

Collaboration


Dive into the Christine Moisan's collaboration.

Top Co-Authors

Avatar

Aline Amérand

University of Western Brittany

View shared research outputs
Top Co-Authors

Avatar

Philippe Sébert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Vettier

University of Western Brittany

View shared research outputs
Top Co-Authors

Avatar

P. Sébert

University of Western Brittany

View shared research outputs
Top Co-Authors

Avatar

D. Scaion

University of Western Brittany

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karine Pichavant-Rafini

University of Western Brittany

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge