Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine N. Metz is active.

Publication


Featured researches published by Christine N. Metz.


Journal of Immunology | 2001

Peripheral Blood Fibrocytes: Differentiation Pathway and Migration to Wound Sites

Riichiro Abe; Richard Bucala; Seamas C. Donnelly; Christine N. Metz

Fibrocytes are a distinct population of blood-borne cells that display a unique cell surface phenotype (collagen I+/CD11b+/CD13+/CD34+/CD45RO+/MHC class II+/CD86+) and exhibit potent immunostimulatory activities. Circulating fibrocytes rapidly enter sites of tissue injury, suggesting an important role for these cells in wound repair. However, the regulatory processes that govern the differentiation of blood-borne fibrocytes and the mechanisms that underlie the migration of these cells to wound sites are currently not known. We report herein that ex vivo cultured fibrocytes can differentiate from a CD14+-enriched mononuclear cell population and that this process requires contact with T cells. Furthermore, we demonstrate that TGF-β1 (1–10 ng/ml), an important fibrogenic and growth-regulating cytokine involved in wound healing, increases the differentiation and functional activity of cultured fibrocytes. Because fibrocytes home to sites of tissue injury, we examined the role of chemokine/chemokine receptor interactions in fibrocyte trafficking. We show that secondary lymphoid chemokine, a ligand of the CCR7 chemokine receptor, acts as a potent stimulus for fibrocyte chemotaxis in vitro and for the homing of injected fibrocytes to sites of cutaneous tissue injury in vivo. Finally, we demonstrate that differentiated, cultured fibrocytes express α smooth muscle actin and contract collagen gels in vitro, two characteristic features of wound-healing myofibroblasts. These data provide important insight into the control of fibrocyte differentiation and trafficking during tissue repair and significantly expand their potential role during wound healing.


Journal of Experimental Medicine | 2003

MIF Signal Transduction Initiated by Binding to CD74

Lin Leng; Christine N. Metz; Yan Fang; Jing Xu; Seamas C. Donnelly; John Baugh; Thomas Delohery; Yibang Chen; Robert A. Mitchell; Richard Bucala

Macrophage migration inhibitory factor (MIF) accounts for one of the first cytokine activities to have been described, and it has emerged recently to be an important regulator of innate and adaptive immunity. MIF is an upstream activator of monocytes/macrophages, and it is centrally involved in the pathogenesis of septic shock, arthritis, and other inflammatory conditions. The protein is encoded by a unique but highly conserved gene, and X-ray crystallography studies have shown MIF to define a new protein fold and structural superfamily. Although recent work has begun to illuminate the signal transduction pathways activated by MIF, the nature of its membrane receptor has not been known. Using expression cloning and functional analysis, we report herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF. MIF binds to the extracellular domain of CD74, and CD74 is required for MIF-induced activation of the extracellular signal–regulated kinase–1/2 MAP kinase cascade, cell proliferation, and PGE2 production. A recombinant, soluble form of CD74 binds MIF with a dissociation constant of ∼9 × 10−9 K d, as defined by surface plasmon resonance (BIAcore analysis), and soluble CD74 inhibits MIF-mediated extracellular signal–regulated kinase activation in defined cell systems. These data provide a molecular basis for MIFs interaction with target cells and identify it as a natural ligand for CD74, which has been implicated previously in signaling and accessory functions for immune cell activation.


Nature Medicine | 2000

Protection from septic shock by neutralization of macrophage migration inhibitory factor.

Thierry Calandra; Bernd Echtenacher; Didier Le Roy; J. Pugin; Christine N. Metz; Lothar Hültner; Didier Heumann; Daniela N. Männel; Richard Bucala; Michel P. Glauser

Identification of new therapeutic targets for the management of septic shock remains imperative as all investigational therapies, including anti-tumor necrosis factor (TNF) and anti-interleukin (IL)-1 agents, have uniformly failed to lower the mortality of critically ill patients with severe sepsis. We report here that macrophage migration inhibitory factor (MIF) is a critical mediator of septic shock. High concentrations of MIF were detected in the peritoneal exudate fluid and in the systemic circulation of mice with bacterial peritonitis. Experiments performed in TNFα knockout mice allowed a direct evaluation of the part played by MIF in sepsis in the absence of this pivotal cytokine of inflammation. Anti-MIF antibody protected TNFα knockout from lethal peritonitis induced by cecal ligation and puncture (CLP), providing evidence of an intrinsic contribution of MIF to the pathogenesis of sepsis. Anti-MIF antibody also protected normal mice from lethal peritonitis induced by both CLP and Escherichia coli, even when treatment was started up to 8 hours after CLP. Conversely, co-injection of recombinant MIF and E. coli markedly increased the lethality of peritonitis. Finally, high concentrations of MIF were detected in the plasma of patients with severe sepsis or septic shock. These studies define a critical part for MIF in the pathogenesis of septic shock and identify a new target for therapeutic intervention.


Journal of Biological Chemistry | 1999

Sustained Mitogen-activated Protein Kinase (MAPK) and Cytoplasmic Phospholipase A2 Activation by Macrophage Migration Inhibitory Factor (MIF) REGULATORY ROLE IN CELL PROLIFERATION AND GLUCOCORTICOID ACTION

Robert A. Mitchell; Christine N. Metz; Tina Peng; Richard Bucala

Macrophage migration inhibitory factor (MIF) is an important pro-inflammatory mediator with the unique ability to counter-regulate the inhibitory effects of glucocorticoids on immune cell activation. MIF is released from cells in response to glucocorticoids, certain pro-inflammatory stimuli, and mitogens and acts to regulate glucocorticoid action on the ensuing inflammatory response. To gain insight into the molecular mechanism of MIF action, we have examined the role of MIF in the proliferation and intracellular signaling events of the well characterized, NIH/3T3 fibroblast cell line. Both endogenously secreted and exogenously added MIFs stimulate the proliferation of NIH/3T3 cells, and this response is associated with the activation of the p44/p42 extracellular signal-regulated (ERK) mitogen-activated protein kinases (MAP). The MIF-induced activation of these kinases was sustained for a period of at least 24 h and was dependent upon protein kinase A activity. We further show that MIF regulates cytosolic phospholipase A2 activity via a protein kinase A and ERK dependent pathway and that the glucocorticoid suppression of cytokine-induced cytoplasmic phospholipase A2 activity and arachidonic acid release can be reversed by the addition of recombinant MIF. These studies indicate that the sustained activation of p44/p42 MAP kinase and subsequent arachidonate release by cytoplasmic phospholipase A2 are important features of the immunoregulatory and intracellular signaling events initiated by MIF and provide the first insight into the mechanisms that underlie the pro-proliferative and inflammatory properties of this mediator.


Journal of Experimental Medicine | 2005

Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation

Rubina W. Saeed; Santosh Varma; Tina Peng-Nemeroff; Barbara Sherry; David Balakhaneh; Jared M. Huston; Kevin J. Tracey; Yousef Al-Abed; Christine N. Metz

Endothelial cell activation plays a critical role in regulating leukocyte recruitment during inflammation and infection. Based on recent studies showing that acetylcholine and other cholinergic mediators suppress the production of proinflammatory cytokines via the α7 nicotinic acetylcholine receptor (α7 nAChR) expressed by macrophages and our observations that human microvascular endothelial cells express the α7 nAChR, we examined the effect of cholinergic stimulation on endothelial cell activation in vitro and in vivo. Using the Shwartzman reaction, we observed that nicotine (2 mg/kg) and the novel cholinergic agent CAP55 (12 mg/kg) inhibit endothelial cell adhesion molecule expression. Using endothelial cell cultures, we observed the direct inhibitory effects of acetylcholine and cholinergic agents on tumor necrosis factor (TNF)-induced endothelial cell activation. Mecamylamine, an nAChR antagonist, reversed the inhibition of endothelial cell activation by both cholinergic agonists, confirming the antiinflammatory role of the nAChR cholinergic pathway. In vitro mechanistic studies revealed that nicotine blocked TNF-induced nuclear factor–κB nuclear entry in an inhibitor κB (IκB)α- and IκBɛ-dependent manner. Finally, with the carrageenan air pouch model, both vagus nerve stimulation and cholinergic agonists significantly blocked leukocyte migration in vivo. These findings identify the endothelium, a key regulator of leukocyte trafficking during inflammation, as a target of anti-inflammatory cholinergic mediators.


Nature Immunology | 2001

Development of chronic colitis is dependent on the cytokine MIF

Ype P. de Jong; Ana Clara Abadía-Molina; Abhay R. Satoskar; Kareem Clarke; Svend T. Rietdijk; William A. Faubion; Emiko Mizoguchi; Christine N. Metz; Mazen Al Sahli; Tessa ten Hove; Andrew C. Keates; Jodi B. Lubetsky; Richard J. Farrell; Pierre Michetti; Sander J. H. van Deventer; Elias Lolis; John R. David; Atul K. Bhan; Cox Terhorst

The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis. MIF-deficient mice failed to develop disease, but reconstitution of MIF-deficient mice with wild-type innate immune cells restored colitis. In addition, established colitis could be treated with anti-MIF immunoglobulins. Thus, murine colitis is dependent on continuous MIF production by the innate immune system. Because we found increased plasma MIF concentrations in patients with Crohns disease, these data suggested that MIF is a new target for intervention in Crohns disease.


Arthritis & Rheumatism | 1999

Macrophage migration inhibitory factor in rheumatoid arthritis: Evidence of proinflammatory function and regulation by glucocorticoids

Michelle Theresa Leech; Christine N. Metz; Pamela Heidi Hall; Paul Hutchinson; Katerina Gianis; Malcolm D. Smith; Helen Weedon; Stephen R. Holdsworth; Richard Bucala; Eric Francis Morand

OBJECTIVE Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine whose involvement in tumor necrosis factor alpha (TNFalpha) synthesis and T cell activation suggests a role in the pathogenesis of rheumatoid arthritis (RA). Antagonism of MIF is associated with marked inhibition of animal models of RA. Uniquely, MIF is inducible by low concentrations of glucocorticoids. We sought to investigate the expression of MIF in RA synovial tissue. METHODS MIF was demonstrated in human RA synovium by immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and reverse transcription-polymerase chain reaction (RT-PCR). Regulation of MIF expression was investigated by treatment of cultured fibroblast-like synoviocytes (FLS) with interleukin-1beta (IL-1beta), TNFalpha, or interferon-gamma (IFNgamma), and dexamethasone (DEX). Mononuclear cell TNFalpha release after exposure to FLS-conditioned medium was measured by ELISA. RESULTS MIF was present in RA synovial lining CD14+ macrophages and FLS. Constitutive MIF messenger RNA (mRNA) expression was demonstrated by RT-PCR of RNA from unstimulated cultured RA FLS, which also released abundant MIF. Serum, synovial fluid, and FLS intracellular MIF were significantly higher in RA patients than in controls. Synoviocyte MIF was not increased by IL-1beta, TNFalpha, or IFNgamma. In contrast, DEX 10(-7)M significantly reduced synoviocyte MIF, while DEX 10(-10)-10(-12)M induced a significant increase in MIF and MIF mRNA. Peripheral blood mononuclear cell TNFalpha release was induced by culture in RA FLS-conditioned medium, and this induction was significantly abrogated by monoclonal anti-MIF antibody, suggesting that MIF is an upstream regulator of TNFalpha release. CONCLUSION These data represent the first demonstration of the cytokine MIF in human autoimmune disease and suggest MIF as a potential therapeutic target in RA.


The FASEB Journal | 2001

Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo

Ingo Hartlapp; Riichiro Abe; Rubina W. Saeed; Tina Peng; Wolfgang Voelter; Richard Bucala; Christine N. Metz

Angiogenesis is an ordered process requiring the inter‐play of numerous cellular and humoral factors. Studies over the past 20 years have identified several growth factors, cytokines, and enzymes that promote blood vessel formation. Most have revealed how individual factors promote an angiogenic phenotype in endothelial cells in vitro or contribute to blood vessel formation in vivo. However, the fundamental question that remains unanswered is how the cellular microenvironment contributes to angiogenesis. Fibrocytes are a recently characterized mesenchymal cell type isolated from peripheral blood that rapidly enter subcutaneously implanted wound chambers and sites of tissue injury. Here we describe the induction of an angiogenic phenotype in microvascular endothelial cells in vitro and promotion of angiogenesis in vivo by cultured fibrocytes. Fibrocytes constitutively secrete extracellular matrix‐degrading enzymes, primarily matrix metalloproteinase 9, which promotes endothelial cell invasion. In addition, fibrocytes secrete several proangiogenic factors including VEGF, bFGF, IL‐8, PDGF, and hematopoietic growth factors that promote endothelial cell migration, proliferation, and/or tube formation. By contrast, they do not produce representative antiangiogenic factors. Finally, both autologous fibrocytes and fibrocyte‐conditioned media were found to induce blood vessel formation in vivo using the Matrigel angiogenesis model.—Hartlapp, I., Abe, R., Saeed, R. W., Peng, T., Voelter, W., Bucala, R., Metz, C. N. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J. 15, 2215–2224 (2001)


Critical Care Medicine | 2007

Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis

Jared M. Huston; Margot Gallowitsch-Puerta; Mahendar Ochani; Kanta Ochani; Renqi Yuan; Mauricio Rosas-Ballina; Mala Ashok; Richard S. Goldstein; Sangeeta Chavan; Valentin A. Pavlov; Christine N. Metz; Huan Yang; Christopher J. Czura; Haichao Wang; Kevin J. Tracey

Objective: Electrical vagus nerve stimulation inhibits proinflammatory cytokine production and prevents shock during lethal systemic inflammation through an [alpha]7 nicotinic acetylcholine receptor ([alpha]7nAChR)‐dependent pathway to the spleen, termed the cholinergic anti‐inflammatory pathway. Pharmacologic [alpha]7nAChR agonists inhibit production of the critical proinflammatory mediator high mobility group box 1 (HMGB1) and rescue mice from lethal polymicrobial sepsis. Here we developed a method of transcutaneous mechanical vagus nerve stimulation and then investigated whether this therapy can protect mice against sepsis lethality. Design: Prospective, randomized study. Setting: Institute‐based research laboratory. Subjects: Male BALB/c mice. Interventions: Mice received lipopolysaccharide to induce lethal endotoxemia or underwent cecal ligation and puncture to induce polymicrobial sepsis. Mice were then randomized to receive electrical, transcutaneous, or sham vagus nerve stimulation and were followed for survival or euthanized at predetermined time points for cytokine analysis. Measurements and Main Results: Transcutaneous vagus nerve stimulation dose‐dependently reduced systemic tumor necrosis factor levels during lethal endotoxemia. Treatment with transcutaneous vagus nerve stimulation inhibited HMGB1 levels and improved survival in mice with polymicrobial sepsis, even when administered 24 hrs after the onset of disease. Conclusions: Transcutaneous vagus nerve stimulation is an efficacious treatment for mice with lethal endotoxemia or polymicrobial sepsis.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting

G. Fingerle-Rowson; Oleksi Petrenko; Christine N. Metz; Thomas G. Forsthuber; Robert A. Mitchell; R. Huss; Ute M. Moll; Werner Müller; Richard Bucala

Macrophage migration inhibitory factor (MIF) is a mediator of host immunity and functions as a high, upstream activator of cells within the innate and the adaptive immunological systems. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. To better understand MIFs activity in growth control, we generated and characterized a strain of MIF-knockout (MIF-KO) mice in the inbred, C57BL/6 background. Embryonic fibroblasts from MIF-KO mice exhibit p53-dependent growth alterations, increased p53 transcriptional activity, and resistance to ras-mediated transformation. Concurrent deletion of the p53 gene in vivo reversed the observed phenotype of cells deficient in MIF. In vivo studies showed that fibrosarcomas induced by the carcinogen benzo[α]pyrene are smaller in size and have a lower mitotic index in MIF-KO mice relative to their WT counterparts. The data provide direct genetic evidence for a functional link between MIF and the p53 tumor suppressor and indicate an important and previously unappreciated role for MIF in carcinogenesis.

Collaboration


Dive into the Christine N. Metz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangying Xue

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Prodyot Chatterjee

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Yousef Al-Abed

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin J. Tracey

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Madhu Gupta

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edmund J. Miller

The Feinstein Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge