Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Nießner is active.

Publication


Featured researches published by Christine Nießner.


PLOS ONE | 2011

Avian Ultraviolet/Violet Cones Identified as Probable Magnetoreceptors

Christine Nießner; Susanne Denzau; Julia Christina Gross; Leo Peichl; Hans-Joachim Bischof; Gerta Fleissner; Wolfgang Wiltschko; Roswitha Wiltschko

Background The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so far, the exact subcellular characterization of these molecules in the retina remained unknown. Methodology/Principal Findings We here describe the localization of cryptochrome 1a (Cry1a) in the retina of European robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V) cones that are distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is anchored along membranes. Conclusions/Significance We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic directions, and thus provide the Radical-Pair-Model with a profound histological background.


Journal of the Royal Society Interface | 2013

Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds

Christine Nießner; Susanne Denzau; Katrin Stapput; Margaret Ahmad; Leo Peichl; Wolfgang Wiltschko; Roswitha Wiltschko

The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp•/FAD• radical pair formed during photoreduction is crucial for detecting magnetic directions.


Scientific Reports | 2016

Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals

Christine Nießner; Susanne Denzau; Erich Pascal Malkemper; Julia Christina Gross; Hynek Burda; Michael Winklhofer; Leo Peichl

Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.


The Journal of Experimental Biology | 2014

Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle

Christine Nießner; Susanne Denzau; Leo Peichl; Wolfgang Wiltschko; Roswitha Wiltschko

Cryptochrome 1a, located in the UV/violet-sensitive cones in the avian retina, is discussed as receptor molecule for the magnetic compass of birds. Our previous immunohistochemical studies of chicken retinae with an antiserum that labelled only activated cryptochrome 1a had shown activation of cryptochrome 1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light. Green light, however, does not allow the first step of photoreduction of oxidized cryptochromes to the semiquinone. As the chickens had been kept under ‘white’ light before, we suggested that there was a supply of the semiquinone present at the beginning of the exposure to green light, which could be further reduced and then re-oxidized. To test this hypothesis, we exposed chickens to various wavelengths (1) for 30 min after being kept in daylight, (2) for 30 min after a 30 min pre-exposure to total darkness, and (3) for 1 h after being kept in daylight. In the first case, we found activated cryptochrome 1a under UV, blue, turquoise and green light; in the second two cases we found activated cryptochrome 1a only under UV to turquoise light, where the complete redox cycle of cryptochrome can run, but not under green light. This observation is in agreement with the hypothesis that activated cryptochrome 1a is found as long as there is some of the semiquinone left, but not when the supply is depleted. It supports the idea that the crucial radical pair for magnetoreception is generated during re-oxidation.


The Journal of Experimental Biology | 2014

Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle

Roswitha Wiltschko; Dennis Gehring; Susanne Denzau; Christine Nießner; Wolfgang Wiltschko

Behavioural tests of the magnetic compass of birds and corresponding immunohistological studies on the activation of retinal cryptochrome 1a, the putative receptor molecule, showed oriented behaviour and activated Cry1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light, although the last wavelength does not allow the first step of photoreduction of cryptochrome to the semiquinone form. The tested birds had been kept under ‘white’ light before, hence we suggested that there was a supply of semiquinone present at the beginning of the exposure to green light that could be further reduced and then re-oxidized. To test the hypothesis in behavioural experiments, we tested robins, Erithacus rubecula, under various wavelengths (1) after 1 h pre-exposure to total darkness and (2) after 1 h pre-exposure to the same light as used in the test. The birds were oriented under blue and turquoise light, where the full cryptochrome cycle can run, but not under green light. This finding is in agreement with the hypothesis. Orientation under green light appears to be a transient phenomenon until the supply of semiquinone is depleted.


PLOS ONE | 2016

Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird.

Christine Nießner; Julia Christina Gross; Susanne Denzau; Leo Peichl; Gerta Fleissner; Wolfgang Wiltschko; Roswitha Wiltschko

Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.


The Journal of Experimental Biology | 2013

Ontogenetic development of magnetic compass orientation in domestic chickens ( Gallus gallus )

Susanne Denzau; Christine Nießner; Lesley J. Rogers; Wolfgang Wiltschko

SUMMARY Domestic chickens (Gallus gallus) can be trained to search for a social stimulus in a specific magnetic direction, and cryptochrome 1a, found in the retina, has been proposed as a receptor molecule mediating magnetic directions. The present study combines immuno-histochemical and behavioural data to analyse the ontogenetic development of this ability. Newly hatched chicks already have a small amount of cryptochrome 1a in their violet cones; on day 5, the amount of cryptochrome 1a reached the same level as in adult chickens, suggesting that the physical basis for magnetoreception is present. In behavioural tests, however, young chicks 5 to 7 days old failed to show a preference of the training direction; on days 8, 9 and 12, they could be successfully trained to search along a specific magnetic axis. Trained and tested again 1 week later, the chicks that had not shown a directional preference on days 5 to 7 continued to search randomly, while the chicks tested from day 8 onward preferred the correct magnetic axis when tested 1 week later. The observation that the magnetic compass is not functional before day 8 suggests that certain maturation processes in the magnetosensitive system in the brain are not yet complete before that day. The reasons why chicks that have been trained before that day fail to learn the task later remain unclear.


Journal of the Royal Society Interface | 2016

Light-dependent magnetoreception in birds: the crucial step occurs in the dark

Roswitha Wiltschko; Margaret Ahmad; Christine Nießner; Dennis Gehring; Wolfgang Wiltschko

The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass.


Communicative & Integrative Biology | 2011

Avian ultraviolet/violet cones as magnetoreceptors: The problem of separating visual and magnetic information

Hans-Joachim Bischof; Christine Nießner; Leo Peichl; Roswitha Wiltschko; Wolfgang Wiltschko

In a recent paper, we described the localization of cryptochrome 1a in the retina of domestic chickens, Gallus gallus, and European robins, Erithacus rubecula: Cryptochrome 1a was found exclusively along the membranes of the disks in the outer segments of the ultraviolet/violet single cones. Cryptochrome has been suggested to act as receptor molecule for the avian magnetic compass, which would mean that the UV/V cones have a double function: they mediate vision in the short-wavelength range and, at the same time, magnetic directional information. This has important implications and raises a number of questions, in particular, how the two types of input are separated. Here, we point out several possibilities how this could be achieved.


Communicative & Integrative Biology | 2013

The magnetic compass of domestic chickens.

Susanne Denzau; Christine Nießner; Lesley J. Rogers; Wolfgang Wiltschko

In a recent paper, we showed that domestic chickens can be trained to search for a social stimulus in specific magnetic directions. Chickens can hardly fly and have only small home ranges, hence their having a functional magnetic compass may seem rather surprising. Yet considering the natural habitat of their ancestors and their lifestyle until recently, the advantages of a magnetic compass become evident.

Collaboration


Dive into the Christine Nießner's collaboration.

Top Co-Authors

Avatar

Wolfgang Wiltschko

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Roswitha Wiltschko

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Susanne Denzau

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis Gehring

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Julia Christina Gross

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Gerta Fleissner

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge