Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Paillard is active.

Publication


Featured researches published by Christine Paillard.


The Journal of Experimental Biology | 2003

Effect of a mono-specific algal diet on immune functions in two bivalve species - Crassostrea gigas and Ruditapes philippinarum

Maryse Delaporte; Philippe Soudant; Jeanne Moal; Christophe Lambert; Claudie Quéré; Philippe Miner; Gwénaëlle Choquet; Christine Paillard; Jean-Francois Samain

SUMMARY The impact of diets upon the fatty acid composition of haemocyte polar lipids and consequently upon immune parameters has been tested in the oyster Crassostrea gigas and the clam Ruditapes philippinarum. Oysters and clams were fed each of three cultured algae: Chaetoceros calcitrans, which is rich in 20:5(n-3) and 20:4(n-6) and poor in 22:6(n-3) fatty acids; T-Iso (Isochrysis sp.), which is rich in 22:6(n-3) and deficient in 20:5(n-3) and 20:4(n-6); and Tetraselmis suecica, which is deficient in 22:6(n-3) and contains only small amounts of 20:5(n-3) and 20:4(n-6). Fatty acid composition of haemocyte polar lipids was greatly affected by the diet. Oysters and clams fed C. calcitrans maintained a higher proportion of 20:5(n-3) and 20:4(n-6) in their haemocyte polar lipids, while these polyunsaturated fatty acids decreased drastically for animals fed T-Iso. However, the T-Iso diet maintained 22:6(n-3) in haemocyte polar lipids of both species. Higher 20:5(n-3) and 20:4(n-6) contents in diets appeared to have a positive effect upon total haemocyte count, granulocyte percentage, phagocytic rate and oxidative activity of clam haemocytes. Similarly, a positive effect of 20:5(n-3) on oxidative activity of oyster haemocytes was observed but to a lesser extent than in clams. Interestingly, when oyster haemocytes are submitted to a stressful condition, a positive effect of a higher dietary 22:6(n-3) content on the phagocytic rate was noticed.


International Journal of Systematic and Evolutionary Microbiology | 1996

Vibrio tapetis sp. nov., the Causative Agent of the Brown Ring Disease Affecting Cultured Clams

Juan J. Borrego; Dolores Castro; Antonio Luque; Christine Paillard; Philippe Maes; María Teresa García; Antonio Ventosa

A taxonomic characterization was carried out on strains of the bacteria that cause the brown ring disease of clams. On the basis of their phenotypic and genotypic characteristics, these strains can be considered to constitute a new taxonomic unit, distinct from other Vibrio species. The guanine-plus-cytosine content of the strains ranged between 42.9 and 45.5 mol% (43.2 mol% for the proposed type strain). DNA-DNA hybridization studies showed 100% intragroup relatedness, but levels of genetic relatedness to the reference strains of different Vibrio species tested ranged between 15 and 58%. The strains have all the properties characteristic of the genus Vibrio and can be clearly differentiated from other species of this genus by their growth at 4°C and their negative responses for growth at 30°C and in 6% NaCl, arginine dehydrolase, lysine decarboxylase, ornithine decarboxylase, and Voges-Proskauer reaction. The name Vibrio tapetis is proposed for the new species; strain B1090 (CECT 4600) is the type strain.


Reviews in Fisheries Science | 2008

Study of Diseases and the Immune System of Bivalves Using Molecular Biology and Genomics

Camino Gestal; Philippe Roch; Tristan Renault; Alberto Pallavicini; Christine Paillard; Beatriz Novoa; Radouane Oubella; Paola Venier; Antonio Figueras

Environmental chemico-physical factors, pathogens, and biological interactions constantly affect organism physiology and behavior. Invertebrates, including bivalve mollusks do not possess acquired immunity. Their defense mechanisms rely on an innate, non-adaptive immune system employing circulating cells and a large variety of molecular effectors. The mechanisms underlying host defense depend on the presence of functional proteins in appropriate quantities, within a crucial time window. These proteins are encoded by genes whose transcription is tightly coordinated by complex programs of gene expression. Currently available advanced techniques allow the evaluation of this gene expression, expanding our understanding of the behavior and function of cells and tissues under varying conditions. In particular, DNA microarray technology enables measurement of a large predetermined set of known genes or sequences. Expressed sequence tag sequencing from redundant, normalized, subtractive hybridization libraries is a robust method for sampling the protein encoding genes that are expressed within a tissue. The elimination of microorganisms by defense cells is a dynamic process that involves integrating synthesis of granule proteins during differentiation, migration onto sites of infection, phagocytosis and killing of microorganisms, modulation of their effector cells, and finally apoptosis. Understanding how this complex biological process is regulated can best be addressed using a systems biology approach to the study of organisms and populations in order to more effectively decipher the continuous challenge between two genomes, i.e., evolving host-pathogen interactions.


Journal of Invertebrate Pathology | 2010

Gene expression patterns of abalone, Haliotis tuberculata, during successive infections by the pathogen Vibrio harveyi.

Marie-Agnès Travers; Anne-Leila Meistertzheim; Marion Cardinaud; Carolyn S. Friedman; Sylvain Huchette; Dario Moraga; Christine Paillard

Since 1998, episodic mass mortality of the abalone Haliotistuberculata has been observed along the northern Brittany coast of France caused by a complex interaction among the host, pathogen and environmental factors. In the present study, abalone were submitted to two successive infections with the pathogen Vibrioharveyi under controlled conditions. During the first challenge, infection by V.harveyi resulted in 64% mortality of mature abalone. After a second infection of those surviving the first challenge, only 44% mortality was observed. Physiological variability in the host response appears to be a major determinant in susceptibility to V.harveyi. In order to isolate differentially expressed genes in H.tuberculata challenged with this bacterium, suppression subtractive hybridization (SSH) cDNA libraries were constructed from muscle of moribund abalone (susceptibles), surviving individuals (apparently resistant to the bacterium) and control (unexposed) animals. Of the 1152 clones sequenced, 218 different partial cDNA sequences were obtained and represented 69 known genes. Of these, 65 were identified for the first time in H.tuberculata. Using real-time PCR, a time-course study was conducted on 19 of the genes identified by SSH. A majority of differentially expressed transcripts were down-regulated in susceptible individuals as compared to their resistant counterparts. Bacterial challenge of abalone resulted in the up-regulation of three transcripts (encoding ferritin, heat shock protein HSP84 and fatty acid binding protein FABP) in those that survived exposure to V.harveyi. This study has identified potential candidates for further investigation into the functional basis of resistance and susceptibility to summer vibriosis outbreaks in abalone.


Fems Microbiology Letters | 2008

Construction of a stable GFP-tagged Vibrio harveyi strain for bacterial dynamics analysis of abalone infection.

Marie-Agnès Travers; Annaïck Barbou; Nelly Le Goïc; Sylvain Huchette; Christine Paillard; Marcel Koken

Vibrio harveyi is a bacterial marine pathogen that can cause fatal disease in a large range of vertebrates and invertebrates, including the commercially important marine gastropod, Haliotis tuberculata. Since 1997, strains of this bacterium have regularly been causing high mortalities in farmed and wild abalone populations. The way in which the pathogen enters into abalone and the disease transmission mechanisms are thus far unknown. Therefore, a pathogenic strain, ORM4, was green fluorescent protein-tagged and validated both for its growth characteristics and for its virulence as a genuine model for abalone disease. The strain allows V. harveyi quantification by flow cytometry in seawater and in abalone haemolymph as well as the in situ detection of the parasite inside abalone tissues.


Fish & Shellfish Immunology | 2013

Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to Brown Ring Disease

Bassem Allam; Emmanuelle Pales Espinosa; Arnaud Tanguy; Fanny Jeffroy; Cédric Le Bris; Christine Paillard

Brown Ring Disease (BRD) is a bacterial infection affecting the economically-important clam Ruditapes philippinarum. The disease is caused by a bacterium, Vibrio tapetis, that colonizes the edge of the mantle, altering the biomineralization process and normal shell growth. Altered organic shell matrices accumulate on the inner face of the shell leading to the formation of the typical brown ring in the extrapallial space (between the mantle and the shell). Even though structural and functional changes have been described in solid (mantle) and fluid (hemolymph and extrapallial fluids) tissues from infected clams, the underlying molecular alterations and responses remain largely unknown. This study was designed to gather information on clam molecular responses to the disease and to compare focal responses at the site of the infection (mantle and extrapallial fluid) with systemic (hemolymph) responses. To do so, we designed and produced a Manila clam expression oligoarray (15K Agilent) using transcriptomic data available in public databases and used this platform to comparatively assess transcriptomic changes in mantle, hemolymph and extrapallial fluid of infected clams. Results showed significant regulation in diseased clams of molecules involved in pathogen recognition (e.g. lectins, C1q domain-containing proteins) and killing (defensin), apoptosis regulation (death-associated protein, bcl-2) and in biomineralization (shell matrix proteins, perlucin, galaxin, chitin- and calcium-binding proteins). While most changes in response to the disease were tissue-specific, systemic alterations included co-regulation in all 3 tested tissues of molecules involved in microbe recognition and killing (complement-related factors, defensin). These results provide a first glance at molecular alterations and responses caused by BRD and identify targets for future functional investigations.


Environmental Microbiology | 2012

Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses

Anne-Claire Baudoux; Roger W. Hendrix; Gabriel C. Lander; X. Bailly; Sheila Podell; Christine Paillard; John E. Johnson; Clinton S. Potter; Bridget Carragher; Farooq Azam

We report on a genomic and functional analysis of a novel marine siphovirus, the Vibrio phage SIO-2. This phage is lytic for related Vibrio species of great ecological interest including the broadly antagonistic bacterium Vibrio sp. SWAT3 as well as notable members of the Harveyi clade (V.harveyi ATTC BAA-1116 and V.campbellii ATCC 25920). Vibrio phage SIO-2 has a circularly permuted genome of 80598 bp, which displays unusual features. This genome is larger than that of most known siphoviruses and only 38 of the 116 predicted proteins had homologues in databases. Another divergence is manifest by the origin of core genes, most of which share robust similarities with unrelated viruses and bacteria spanning a wide range of phyla. These core genes are arranged in the same order as in most bacteriophages but they are unusually interspaced at two places with insertions of DNA comprising a high density of uncharacterized genes. The acquisition of these DNA inserts is associated with morphological variation of SIO-2 capsid, which assembles as a large (80 nm) shell with a novel T=12 symmetry. These atypical structural features confer on SIO-2 a remarkable stability to a variety of physical, chemical and environmental factors. Given this high level of functional and genomic novelty, SIO-2 emerges as a model of considerable interest in ecological and evolutionary studies.


Marine Biotechnology | 2011

Proteomic Identification of Novel Proteins from the Calcifying Shell Matrix of the Manila Clam Venerupis Philippinarum

Benjamin Marie; Nolwenn Trinkler; Isabelle Zanella-Cléon; Nathalie Guichard; Michel Becchi; Christine Paillard; Frédéric Marin

The shell of the Manila clam Venerupis philippinarum is composed of more than 99% calcium carbonate and of a small amount of organic matrix (around 0.2%). In this study, we developed one of the first proteomic approaches applied to mollusc shell in order to characterise the matrix proteins that are believed to be essential for the formation of the biomineral. The insoluble organic matrix, purified after demineralisation of the shell powder with cold acetic acid (5%), was digested with trypsin enzyme and then separated on nano-LC prior to nanospray/quadrupole time-of-flight analysis. MS/MS spectra were searched against the above 11,000 EST sequences available on the NCBI public database for Venerupis. Using this approach, we were able to identify partial or full-length sequence transcripts that encode for shell matrix proteins. These include three novel shell proteins whose sequences do not present any homologous proteins or already described domains, two putative protease inhibitor proteins containing Kazal-type domains, and a putative Ca2+-binding protein containing two EF-hand domains. Biomineral formation and evolutionary implications are discussed.


Journal of Cellular Biochemistry | 2009

Pathogenic Vibrio harveyi, in contrast to non-pathogenic strains, intervenes with the p38 MAPK pathway to avoid an abalone haemocyte immune response.

Marie-Agnès Travers; Ronan Le Bouffant; Carolyn S. Friedman; Florence Buzin; Bertrand Cougard; Sylvain Huchette; Marcel Koken; Christine Paillard

Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone epidemics associated with massive mortalities in France, Japan, and Australia. The aim of this study was the understanding of a possible role of the p38 MAPK in abalone haemocyte responses towards this bacterium. First, the pathogenicity of different V. harveyi strains was compared in both immersion and injection trials, and clear differences were detected. The three strains, ORM4, 04/092, and 05/053, all isolated from moribund abalone, induced up to 80% mortalities in immersion or injection challenges (LD50 (ORM4) = 2.5 × 102 CFU animal−1). The two strains, LMG 4044T and LMG 7890 were non‐pathogenic towards abalone in immersion trials, and needed very high numbers for killing by intramuscular injections (LD50 = 8.9 × 104 and 1.6 × 105 CFU animal−1, respectively). To start unraveling the mechanism explaining these differences, the p38‐MAPK, a keyplayer in antimicrobial immune response, was studied. The non‐pathogenic strain, LMG 7890 can be eliminated by abalone haemocytes and induces haemocyte phagocytosis and high ROS production. With different concentrations of a p38‐specific inhibitor, SB203580, p38 implication was shown. This inhibitor reduced phagocytosis and ROS induction leading to LMG 7890 proliferation. In the case of the pathogenic ORM4 which can not be eliminated by abalone haemocytes, no phagocytosis and ROS production was induced, and a retarded p38 activation was observed. Taken together, our results suggest that p38 MAPK modulation may be one of the ways of virulent V. harveyi to attack its host and escape abalone immune response. J. Cell. Biochem. 106: 152–160, 2009.


Applied and Environmental Microbiology | 2008

DjlA, a Membrane-Anchored DnaJ-Like Protein, Is Required for Cytotoxicity of Clam Pathogen Vibrio tapetis to Hemocytes

Fatma Lakhal; Stéphanie Bury-Moné; Yanoura Nomane; Nelly Le Goïc; Christine Paillard; Annick Jacq

ABSTRACT DjlA is an inner membrane cochaperone belonging to the DnaJ family, which has been shown to be involved in Legionella sp. pathogenesis. In this study, we explored the role of this protein in the physiology and virulence of Vibrio tapetis, the etiological agent of brown ring disease (BRD) in Manila clam (Ruditapes philippinarum). Analysis of the djlA locus in V. tapetis revealed a putative organization in an operon with a downstream gene that we designated duf924Vt, which encodes a conserved protein with an unknown function and has homologues in bacteria and eukaryotes. djlA mutants displayed a reduced growth rate and showed an important loss of cytotoxic activity against R. philippinarum hemocytes in vitro, which could be restored by extrachromosomal expression of wild-type djlAVt but not duf924Vt. These results are in keeping with the potential importance of DjlA for bacterial pathogenicity and open new perspectives for understanding the mechanism of action of this protein in the novel V. tapetis-R. philippinarum interaction model.

Collaboration


Dive into the Christine Paillard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fatma Lakhal

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge