Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Schwienbacher is active.

Publication


Featured researches published by Christine Schwienbacher.


Nature Communications | 2015

Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis (vol 5, 4926, 2014)

Beben Benyamin; Tonu Esko; Janina S. Ried; Aparna Radhakrishnan; Sita H. Vermeulen; Michela Traglia; Martin Goegele; Denise Anderson; Linda Broer; Clara Podmore; Jian'an Luan; Zoltán Kutalik; Serena Sanna; Peter van der Meer; Toshiko Tanaka; Fudi Wang; Harm-Jan Westra; Lude Franke; Evelin Mihailov; Lili Milani; Jonas Haelldin; Juliane Winkelmann; Thomas Meitinger; Joachim Thiery; Annette Peters; Melanie Waldenberger; Augusto Rendon; Jennifer Jolley; Jennifer Sambrook; Lambertus A. Kiemeney

Corrigendum: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis


PLOS Genetics | 2009

Genetic determinants of circulating sphingolipid concentrations in European populations

Andrew A. Hicks; Peter P. Pramstaller; Åsa Johansson; Veronique Vitart; Igor Rudan; Peter Ugocsai; Yurii S. Aulchenko; Christopher S. Franklin; Gerhard Liebisch; Jeanette Erdmann; Inger Jonasson; Irina V. Zorkoltseva; Cristian Pattaro; Caroline Hayward; Aaron Isaacs; Christian Hengstenberg; Susan Campbell; Carsten Gnewuch; A. CecileJ.W. Janssens; Anatoly V. Kirichenko; Inke R. König; Fabio Marroni; Ozren Polašek; Ayse Demirkan; Ivana Kolcic; Christine Schwienbacher; Wilmar Igl; Zrinka Biloglav; Jacqueline C. M. Witteman; Irene Pichler

Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic β-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08×10−66. The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1–3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10−4 or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases.


Human Molecular Genetics | 2011

Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels

Konrad Oexle; Janina S. Ried; Andrew A. Hicks; Toshiko Tanaka; Caroline Hayward; M. Bruegel; Martin Gögele; Peter Lichtner; Bertram Müller-Myhsok; Angela Döring; Thomas Illig; Christine Schwienbacher; Cosetta Minelli; Irene Pichler; G. M. Fiedler; Joachim Thiery; Igor Rudan; Alan F. Wright; Harry Campbell; Luigi Ferrucci; Stefania Bandinelli; Peter P. Pramstaller; H-Erich Wichmann; Christian Gieger; Juliane Winkelmann; Thomas Meitinger

The level of body iron storage and the erythropoietic need for iron are indicated by the serum levels of ferritin and soluble transferrin receptor (sTfR), respectively. A meta-analysis of five genome-wide association studies on sTfR and ferritin revealed novel association to the PCSK7 and TMPRSS6 loci for sTfR and the HFE locus for both parameters. The PCSK7 association was the most significant (rs236918, P = 1.1 × 10E-27) suggesting that proprotein convertase 7, the gene product of PCSK7, may be involved in sTfR generation and/or iron homeostasis. Conditioning the sTfR analyses on transferrin saturation abolished the HFE signal and substantially diminished the TMPRSS6 signal while the PCSK7 association was unaffected, suggesting that the former may be mediated by transferrin saturation whereas the PCSK7-associated effect on sTfR generation appears to be more direct.


Human Molecular Genetics | 2011

Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels

Irene Pichler; Cosetta Minelli; Serena Sanna; Toshiko Tanaka; Christine Schwienbacher; Silvia Naitza; Eleonora Porcu; Cristian Pattaro; Fabio Busonero; Alessandra Zanon; Andrea Maschio; Scott A. Melville; Maria Grazia Piras; Dan L. Longo; Jack M. Guralnik; Dena Hernandez; Stefania Bandinelli; Elmar Aigner; Anthony T. Murphy; Victor J. Wroblewski; Fabio Marroni; Igor Theurl; Carsten Gnewuch; Eric E. Schadt; Manfred Mitterer; David Schlessinger; Luigi Ferrucci; Derrick Ryan Witcher; Andrew A. Hicks; Günter Weiss

The genetic determinants of variation in iron status are actively sought, but remain incompletely understood. Meta-analysis of two genome-wide association (GWA) studies and replication in three independent cohorts was performed to identify genetic loci associated in the general population with serum levels of iron and markers of iron status, including transferrin, ferritin, soluble transferrin receptor (sTfR) and sTfR-ferritin index. We identified and replicated a novel association of a common variant in the type-2 transferrin receptor (TFR2) gene with iron levels, with effect sizes highly consistent across samples. In addition, we identified and replicated an association between the HFE locus and ferritin and confirmed previously reported associations with the TF, TMPRSS6 and HFE genes. The five replicated variants were tested for association with expression levels of the corresponding genes in a publicly available data set of human liver samples, and nominally statistically significant expression differences by genotype were observed for all genes, although only rs3811647 in the TF gene survived the Bonferroni correction for multiple testing. In addition, we measured for the first time the effects of the common variant in TMPRSS6, rs4820268, on hepcidin mRNA in peripheral blood (n = 83 individuals) and on hepcidin levels in urine (n = 529) and observed an association in the same direction, though only borderline significant. These functional findings require confirmation in further studies with larger sample sizes, but they suggest that common variants in TMPRSS6 could modify the hepcidin-iron feedback loop in clinically unaffected individuals, thus making them more susceptible to imbalances of iron homeostasis.


American Journal of Human Genetics | 2012

Genetic Associations for Activated Partial Thromboplastin Time and Prothrombin Time, their Gene Expression Profiles, and Risk of Coronary Artery Disease

Weihong Tang; Christine Schwienbacher; Lorna M. Lopez; Yoav Ben-Shlomo; Tiphaine Oudot-Mellakh; Andrew D. Johnson; Nilesh J. Samani; Saonli Basu; Martin Gögele; Gail Davies; Gordon Lowe; David-Alexandre Trégouët; Adrian Tan; James S. Pankow; Albert Tenesa; Daniel Levy; Claudia B. Volpato; Ann Rumley; Alan J. Gow; Cosetta Minelli; John Yarnell; David J. Porteous; John Gallacher; Eric Boerwinkle; Peter M. Visscher; Peter P. Pramstaller; Mary Cushman; Valur Emilsson; Andrew S. Plump; Nena Matijevic

Activated partial thromboplastin time (aPTT) and prothrombin time (PT) are clinical tests commonly used to screen for coagulation-factor deficiencies. One genome-wide association study (GWAS) has been reported previously for aPTT, but no GWAS has been reported for PT. We conducted a GWAS and meta-analysis to identify genetic loci for aPTT and PT. The GWAS for aPTT was conducted in 9,240 individuals of European ancestry from the Atherosclerosis Risk in Communities (ARIC) study, and the GWAS for PT was conducted in 2,583 participants from the Genetic Study of Three Population Microisolates in South Tyrol (MICROS) and the Lothian Birth Cohorts (LBC) of 1921 and 1936. Replication was assessed in 1,041 to 3,467 individuals. For aPTT, previously reported associations with KNG1, HRG, F11, F12, and ABO were confirmed. A second independent association in ABO was identified and replicated (rs8176704, p = 4.26 × 10(-24)). Pooling the ARIC and replication data yielded two additional loci in F5 (rs6028, p = 3.22 × 10(-9)) and AGBL1 (rs2469184, p = 3.61 × 10(-8)). For PT, significant associations were identified and confirmed in F7 (rs561241, p = 3.71 × 10(-56)) and PROCR/EDEM2 (rs2295888, p = 5.25 × 10(-13)). Assessment of existing gene expression and coronary artery disease (CAD) databases identified associations of five of the GWAS loci with altered gene expression and two with CAD. In summary, eight genetic loci that account for ∼29% of the variance in aPTT and two loci that account for ∼14% of the variance in PT were detected and supported by functional data.


Neurology | 2015

Overexpression of blood microRNAs 103a, 30b, and 29a in l-dopa–treated patients with PD

Alice Serafin; Luisa Foco; Stefano Zanigni; Hagen Blankenburg; Anne Picard; Alessandra Zanon; Giulia Giannini; Irene Pichler; Maurizio F. Facheris; Pietro Cortelli; Peter P. Pramstaller; Andrew A. Hicks; Francisco S. Domingues; Christine Schwienbacher

Objective: The aims of the present study were to profile the expression of several candidate microRNAs (miRNAs) in blood from l-dopa-treated and drug-naive patients with Parkinson disease (PD) vs unaffected controls and to interpret the miRNA expression data in a biological context. Methods: We analyzed RNAs from peripheral blood of 36 l-dopa–treated, 10 drug-naive patients with PD and unaffected controls matched 1:1 by sex and age. We evaluated expression by reverse transcription–quantitative real-time PCR, and we analyzed data using a 2-tailed paired t test. To detect miRNA targets, several miRNA resources were combined to generate an overall score for each candidate gene using weighted rank aggregation. Results: Significant overexpression of miR-103a-3p (p < 0.0001), miR-30b-5p (p = 0.002), and miR-29a-3p (p = 0.005) in treated patients with PD was observed, and promising candidate target genes for these were revealed by an integrated in silico analysis. Conclusions: We revealed 3 candidate biomarkers for PD. miRNAs 30b-5p and 29a-3p replicated a documented deregulation in PD albeit opposite to published data, while for miR-103a-3p, we demonstrated for the first time an overexpression in treated patients with PD. Expression studies in patients and/or in isolated peripheral blood mononuclear cells before and after l-dopa administration are necessary to define the involvement of l-dopa treatment in the observed overexpression. Our in silico analysis to prioritize targets of deregulated miRNAs identified candidate target genes, including genes related to neurodegeneration and PD. Despite the preliminary character of our study, the results provide a rationale for further clarifying the role of the identified miRNAs in the pathogenesis of PD and for validating their diagnostic potential.


PLOS ONE | 2013

Profiling of Parkin-Binding Partners Using Tandem Affinity Purification

Alessandra Zanon; Aleksandar Rakovic; Hagen Blankenburg; Nadezhda Tsankova Doncheva; Christine Schwienbacher; Alice Serafin; Adrian Alexa; Christian X. Weichenberger; Mario Albrecht; Christine Klein; Andrew A. Hicks; Peter P. Pramstaller; Francisco S. Domingues; Irene Pichler

Parkinsons disease (PD) is a progressive neurodegenerative disorder affecting approximately 1–2% of the general population over age 60. It is characterized by a rather selective loss of dopaminergic neurons in the substantia nigra and the presence of α-synuclein-enriched Lewy body inclusions. Mutations in the Parkin gene (PARK2) are the major cause of autosomal recessive early-onset parkinsonism. The Parkin protein is an E3 ubiquitin ligase with various cellular functions, including the induction of mitophagy upon mitochondrial depolarizaton, but the full repertoire of Parkin-binding proteins remains poorly defined. Here we employed tandem affinity purification interaction screens with subsequent mass spectrometry to profile binding partners of Parkin. Using this approach for two different cell types (HEK293T and SH-SY5Y neuronal cells), we identified a total of 203 candidate Parkin-binding proteins. For the candidate proteins and the proteins known to cause heritable forms of parkinsonism, protein-protein interaction data were derived from public databases, and the associated biological processes and pathways were analyzed and compared. Functional similarity between the candidates and the proteins involved in monogenic parkinsonism was investigated, and additional confirmatory evidence was obtained using published genetic interaction data from Drosophila melanogaster. Based on the results of the different analyses, a prioritization score was assigned to each candidate Parkin-binding protein. Two of the top ranking candidates were tested by co-immunoprecipitation, and interaction to Parkin was confirmed for one of them. New candidates for involvement in cell death processes, protein folding, the fission/fusion machinery, and the mitophagy pathway were identified, which provide a resource for further elucidating Parkin function.


BMC Research Notes | 2014

Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples

Alice Serafin; Luisa Foco; Hagen Blankenburg; Anne Picard; Stefano Zanigni; Alessandra Zanon; Peter P. Pramstaller; Andrew A. Hicks; Christine Schwienbacher

BackgroundResearch on microRNAs (miRNAs) is becoming an increasingly attractive field, as these small RNA molecules are involved in several physiological functions and diseases. To date, only few studies have assessed the expression of blood miRNAs related to Parkinson’s disease (PD) using microarray and quantitative real-time PCR (qRT-PCR). Measuring miRNA expression involves normalization of qRT-PCR data using endogenous reference genes for calibration, but their choice remains a delicate problem with serious impact on the resulting expression levels. The aim of the present study was to evaluate the suitability of a set of commonly used small RNAs as normalizers and to identify which of these miRNAs might be considered reliable reference genes in qRT-PCR expression analyses on PD blood samples.ResultsCommonly used reference genes snoRNA RNU24, snRNA RNU6B, snoRNA Z30 and miR-103a-3p were selected from the literature. We then analyzed the effect of using these genes as reference, alone or in any possible combination, on the measured expression levels of the target genes miR-30b-5p and miR-29a-3p, which have been previously reported to be deregulated in PD blood samples.ConclusionsWe identified RNU24 and Z30 as a reliable and stable pair of reference genes in PD blood samples.


Genetic Epidemiology | 2013

Importance of different types of prior knowledge in selecting genome-wide findings for follow-up.

Cosetta Minelli; Alessandro De Grandi; Christian X. Weichenberger; Martin Gögele; Mirko Modenese; John Attia; Jennifer H. Barrett; Michael Boehnke; Giuseppe Borsani; Giorgio Casari; Caroline S. Fox; Thomas Freina; Andrew A. Hicks; Fabio Marroni; Giovanni Parmigiani; Andrea Pastore; Cristian Pattaro; Arne Pfeufer; Fabrizio Ruggeri; Christine Schwienbacher; Peter P. Pramstaller; Francisco S. Domingues; John R. Thompson

Biological plausibility and other prior information could help select genome‐wide association (GWA) findings for further follow‐up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts’ opinions and empirical evidence to estimate the relative importance of 15 types of information at the single‐nucleotide polymorphism (SNP) and gene levels. Opinions were elicited from 10 experts using a two‐round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNPs established as being associated with seven disease traits through GWA meta‐analysis and independent replication, with the corresponding frequency in a randomly selected set of SNPs. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta‐analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.


Journal of Visualized Experiments | 2015

Generation of Induced Pluripotent Stem Cells from Frozen Buffy Coats using Non-integrating Episomal Plasmids.

Viviana Meraviglia; Alessandra Zanon; Alexandros A. Lavdas; Christine Schwienbacher; Rosamaria Silipigni; Marina Di Segni; Huei Sheng Vincent Chen; Peter P. Pramstaller; Andrew A. Hicks; Alessandra Rossini

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by forcing the expression of four transcription factors (Oct-4, Sox-2, Klf-4, and c-Myc), typically expressed by human embryonic stem cells (hESCs). Due to their similarity with hESCs, iPSCs have become an important tool for potential patient-specific regenerative medicine, avoiding ethical issues associated with hESCs. In order to obtain cells suitable for clinical application, transgene-free iPSCs need to be generated to avoid transgene reactivation, altered gene expression and misguided differentiation. Moreover, a highly efficient and inexpensive reprogramming method is necessary to derive sufficient iPSCs for therapeutic purposes. Given this need, an efficient non-integrating episomal plasmid approach is the preferable choice for iPSC derivation. Currently the most common cell type used for reprogramming purposes are fibroblasts, the isolation of which requires tissue biopsy, an invasive surgical procedure for the patient. Therefore, human peripheral blood represents the most accessible and least invasive tissue for iPSC generation. In this study, a cost-effective and viral-free protocol using non-integrating episomal plasmids is reported for the generation of iPSCs from human peripheral blood mononuclear cells (PBMNCs) obtained from frozen buffy coats after whole blood centrifugation and without density gradient separation.

Collaboration


Dive into the Christine Schwienbacher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge