Christine Verellen-Dumoulin
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Verellen-Dumoulin.
American Journal of Human Genetics | 2001
Bernd Wissinger; Daphne Gamer; Herbert Jägle; Roberto Giorda; Tim Marx; Simone Mayer; Sabine Tippmann; Martina Broghammer; Bernhard Jurklies; Thomas Rosenberg; Samuel G. Jacobson; E. Cumhur Sener; Sinan Tatlipinar; Carel B. Hoyng; Claudio Castellan; Pierre Bitoun; Sten Andréasson; Günter Rudolph; Ulrich Kellner; Birgit Lorenz; Gerhard Wolff; Christine Verellen-Dumoulin; Marianne Schwartz; Frans P.M. Cremers; Eckart Apfelstedt-Sylla; Eberhart Zrenner; Roberto Salati; Lindsay T. Sharpe; Susanne Kohl
We recently showed that mutations in the CNGA3 gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated channel cause autosomal recessive complete achromatopsia linked to chromosome 2q11. We now report the results of a first comprehensive screening for CNGA3 mutations in a cohort of 258 additional independent families with hereditary cone photoreceptor disorders. CNGA3 mutations were detected not only in patients with the complete form of achromatopsia but also in incomplete achromats with residual cone photoreceptor function and (rarely) in patients with evidence for severe progressive cone dystrophy. In total, mutations were identified in 53 independent families comprising 38 new CNGA3 mutations, in addition to the 8 mutations reported elsewhere. Apparently, both mutant alleles were identified in 47 families, including 16 families with presumed homozygous mutations and 31 families with two heterozygous mutations. Single heterozygous mutations were identified in six additional families. The majority of all known CNGA3 mutations (39/46) are amino acid substitutions compared with only four stop-codon mutations, two 1-bp insertions and one 3-bp in-frame deletion. The missense mutations mostly affect amino acids conserved among the members of the cyclic nucleotide gated (CNG) channel family and cluster at the cytoplasmic face of transmembrane domains (TM) S1 and S2, in TM S4, and in the cGMP-binding domain. Several mutations were identified recurrently (e.g., R277C, R283W, R436W, and F547L). These four mutations account for 41.8% of all detected mutant CNGA3 alleles. Haplotype analysis suggests that the R436W and F547L mutant alleles have multiple origins, whereas we found evidence that the R283W alleles, which are particularly frequent among patients from Scandinavia and northern Italy, have a common origin.
American Journal of Human Genetics | 2012
Damien Lederer; Bernard Grisart; Maria Cristina Digilio; Valérie Benoit; Marianne Crespin; Sophie Ghariani; Isabelle Maystadt; Bruno Dallapiccola; Christine Verellen-Dumoulin
Kabuki syndrome (KS) is a rare genetic disease that causes developmental delay and congenital anomalies. Since the identification of MLL2 mutations as the primary cause of KS, such mutations have been identified in 56%-76% of affected individuals, suggesting that there may be additional genes associated with KS. Here, we describe three KS individuals with de novo partial or complete deletions of an X chromosome gene, KDM6A, that encodes a histone demethylase that interacts with MLL2. Although KDM6A escapes X inactivation, we found a skewed X inactivation pattern, in which the deleted X chromosome was inactivated in the majority of the cells. This study identifies KDM6A mutations as another cause of KS and highlights the growing role of histone methylases and histone demethylases in multiple-congenital-anomaly and intellectual-disability syndromes.
Journal of The American Society of Nephrology | 2003
Karin Dahan; Olivier Devuyst; M Smaers; Didier Vertommen; Guy Loute; Jean-Michel Poux; Béatrice Viron; Christian Jacquot; Marie-France Gagnadoux; Dominique Chauveau; Mathias Büchler; Pierre Cochat; Jean-Pierre Cosyns; Béatrice Mougenot; Mark H. Rider; Corinne Antignac; Christine Verellen-Dumoulin; Yves Pirson
Familial juvenile hyperuricemic nephropathy (FJHN [MIM 162000]) is an autosomal-dominant disorder characterized by abnormal tubular handling of urate and late development of chronic interstitial nephritis leading to progressive renal failure. A locus for FJHN was previously identified on chromosome 16p12 close to the MCKD2 locus, which is responsible for a variety of autosomal-dominant medullary cystic kidney disease (MCKD2). UMOD, the gene encoding the Tamm-Horsfall/uromodulin protein, maps within the FJHN/MCKD2 critical region. Mutations in UMOD were recently reported in nine families with FJHN/MCKD2 disease. A mutation in UMOD has been identified in 11 FJHN families (10 missense and one in-frame deletion)-10 of which are novel-clustering in the highly conserved exon 4. The consequences of UMOD mutations on uromodulin expression were investigated in urine samples and renal biopsies from nine patients in four families. There was a markedly increased expression of uromodulin in a cluster of tubule profiles, suggesting an accumulation of the protein in tubular cells. Consistent with this observation, urinary excretion of wild-type uromodulin was significantly decreased. The latter findings were not observed in patients with FJHN without UMOD mutations. In conclusion, this study points to a mutation clustering in exon 4 of UMOD as a major genetic defect in FJHN. Mutations in UMOD may critically affect the function of uromodulin, resulting in abnormal accumulation within tubular cells and reduced urinary excretion.
Journal of Bone and Mineral Research | 2011
Brian P. Kelley; Fransiska Malfait; Luisa Bonafé; Dustin Baldridge; Erica P. Homan; Sofie Symoens; Andy Willaert; Nursel Elcioglu; Lionel Van Maldergem; Christine Verellen-Dumoulin; Yves Gillerot; Dobrawa Napierala; Deborah Krakow; Peter Beighton; Andrea Superti-Furga; Anne De Paepe; Brendan Lee
Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue characterized by bone fragility and alteration in synthesis and posttranslational modification of type I collagen. Autosomal dominant OI is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Bruck syndrome is a recessive disorder featuring congenital contractures in addition to bone fragility; Bruck syndrome type 2 is caused by mutations in PLOD2 encoding collagen lysyl hydroxylase, whereas Bruck syndrome type 1 has been mapped to chromosome 17, with evidence suggesting region 17p12, but the gene has remained elusive so far. Recently, the molecular spectrum of OI has been expanded with the description of the basis of a unique posttranslational modification of type I procollagen, that is, 3‐prolyl‐hydroxylation. Three proteins, cartilage‐associated protein (CRTAP), prolyl‐3‐hydroxylase‐1 (P3H1, encoded by the LEPRE1 gene), and the prolyl cis‐trans isomerase cyclophilin‐B (PPIB), form a complex that is required for fibrillar collagen 3‐prolyl‐hydroxylation, and mutations in each gene have been shown to cause recessive forms of OI. Since then, an additional putative collagen chaperone complex, composed of FKBP10 (also known as FKBP65) and SERPINH1 (also known as HSP47), also has been shown to be mutated in recessive OI. Here we describe five families with OI‐like bone fragility in association with congenital contractures who all had FKBP10 mutations. Therefore, we conclude that FKBP10 mutations are a cause of recessive osteogenesis imperfecta and Bruck syndrome, possibly Bruck syndrome Type 1 since the location on chromosome 17 has not been definitely localized.
Birth Defects Research Part A-clinical and Molecular Teratology | 2011
Ruth Greenlees; Amanda J. Neville; Marie-Claude Addor; Emmanuelle Amar; Larraitz Arriola; Marian K. Bakker; Ingeborg Barišić; Patricia A. Boyd; Elisa Calzolari; Bérénice Doray; Elizabeth S. Draper; Stein Emil Vollset; Ester Garne; Miriam Gatt; Martin Haeusler; Karin Källén; Babak Khoshnood; Anna Latos-Bielenska; M.L. Martínez-Frías; Anna Materna-Kiryluk; Carlos Matias Dias; Bob McDonnell; Carmel Mullaney; Vera Nelen; Mary O'Mahony; Anna Pierini; Annette Queisser-Luft; Hanitra Randrianaivo-Ranjatoelina; Judith Rankin; Anke Rissmann
BACKGROUND EUROCAT is a network of population-based congenital anomaly registries providing standardized epidemiologic information on congenital anomalies in Europe. There are three types of EUROCAT membership: full, associate, or affiliate. Full member registries send individual records of all congenital anomalies covered by their region. Associate members transmit aggregate case counts for each EUROCAT anomaly subgroup by year and by type of birth. This article describes the organization and activities of each of the current 29 full member and 6 associate member registries of EUROCAT. METHODS Each registry description provides information on the history and funding of the registry, population coverage including any changes in coverage over time, sources for ascertaining cases of congenital anomalies, and upper age limit for registering cases of congenital anomalies. It also details the legal requirements relating to termination of pregnancy for fetal anomalies, the definition of stillbirths and fetal deaths, and the prenatal screening policy within the registry. Information on availability of exposure information and denominators is provided. The registry description describes how each registry conforms to the laws and guidelines regarding ethics, consent, and confidentiality issues within their own jurisdiction. Finally, information on electronic and web-based data capture, recent registry activities, and publications relating to congenital anomalies, along with the contact details of the registry leader, are provided. CONCLUSIONS The registry description gives a detailed account of the organizational and operational aspects of each registry and is an invaluable resource that aids interpretation and evaluation of registry prevalence data.
American Journal of Human Genetics | 1997
Barbera Veldhuisen; Jasper J. Saris; S. de Haij; Tomohito Hayashi; David M. Reynolds; Toshio Mochizuki; R. Elles; R. Fossdal; Nadja Bogdanova; M. A. van Dijk; Eliecer Coto; David Ravine; S. Nôrby; Christine Verellen-Dumoulin; Martijn H. Breuning; Stefan Somlo; Dorien J.M. Peters
Recently the second gene for autosomal dominant polycystic kidney disease (ADPKD), located on chromosome 4q21-q22, has been cloned and characterized. The gene encodes an integral membrane protein, polycystin-2, that shows amino acid similarity to the PKD1 gene product and to the family of voltage-activated calcium (and sodium) channels. We have systematically screened the gene for mutations by single-strand conformation-polymorphism analysis in 35 families with the second type of ADPKD and have identified 20 mutations. So far, most mutations found seem to be unique and occur throughout the gene, without any evidence of clustering. In addition to small deletions, insertions, and substitutions leading to premature translation stops, one amino acid substitution and five possible splice-site mutations have been found. These findings suggest that the first step toward cyst formation in PKD2 patients is the loss of one functional copy of polycystin-2.
European Journal of Human Genetics | 2005
Michella Ghassibé; Bénédicte Bayet; Nicole Revencu; Christine Verellen-Dumoulin; Yves Gillerot; Romain Vanwijck; Miikka Vikkula
Cleft lip with or without cleft palate is the most frequent craniofacial malformation in humans (∼1/700). Its etiology is multifactorial; some are a result of a genetic mutation, while others may be due to environmental factors, with genetic predisposition playing an important role. The prevalence varies widely between populations and the mode of inheritance remains controversial. The interferon regulatory factor-6 (IRF6) gene has been shown to harbor mutations in patients with van der Woude syndrome, a dominant form of clefts associated with small pits of the lower lip. Moreover IRF6 has been associated with nonsyndromic cleft of the palate (CL/P) in two separate studies. We investigated the role of IRF6 in a set of 195 trios from Belgium. Cleft occurred as an isolated feature. We studied association of the IRF6 locus using two variants: one in the IRF6 gene and the other 100 kpb 3′ of the gene. Our independent study group confirms that the IRF6 locus is associated with nonsyndromic cleft lip with or without palate. This result, with previous studies performed in the United States and Italy, shows for the first time the implication of IRF6 in isolated CL/P in northern Europe. It is likely that association to this locus can be identified in various populations and that the IRF6 locus thus represents an important genetic modifier for this multifactorial malformation.
BMJ | 2015
Babak Khoshnood; Maria Loane; Hermien E. K. de Walle; Larraitz Arriola; Marie-Claude Addor; Ingeborg Barišić; Judit Béres; Fabrizio Bianchi; Carlos Matias Dias; Elizabeth S Draper; Ester Garne; Miriam Gatt; Martin Haeusler; Kari Klungsøyr; Anna Latos-Bielenska; Catherine Lynch; Bob McDonnell; Vera Nelen; Amanda J. Neville; Mary O'Mahony; Annette Queisser-Luft; Judith Rankin; Anke Rissmann; Annukka Ritvanen; Catherine Rounding; Antonín Šípek; David Tucker; Christine Verellen-Dumoulin; Diana Wellesley; Helen Dolk
Study question What are the long term trends in the total (live births, fetal deaths, and terminations of pregnancy for fetal anomaly) and live birth prevalence of neural tube defects (NTD) in Europe, where many countries have issued recommendations for folic acid supplementation but a policy for mandatory folic acid fortification of food does not exist? Methods This was a population based, observational study using data on 11 353 cases of NTD not associated with chromosomal anomalies, including 4162 cases of anencephaly and 5776 cases of spina bifida from 28 EUROCAT (European Surveillance of Congenital Anomalies) registries covering approximately 12.5 million births in 19 countries between 1991 and 2011. The main outcome measures were total and live birth prevalence of NTD, as well as anencephaly and spina bifida, with time trends analysed using random effects Poisson regression models to account for heterogeneities across registries and splines to model non-linear time trends. Summary answer and limitations Overall, the pooled total prevalence of NTD during the study period was 9.1 per 10 000 births. Prevalence of NTD fluctuated slightly but without an obvious downward trend, with the final estimate of the pooled total prevalence of NTD in 2011 similar to that in 1991. Estimates from Poisson models that took registry heterogeneities into account showed an annual increase of 4% (prevalence ratio 1.04, 95% confidence interval 1.01 to 1.07) in 1995-99 and a decrease of 3% per year in 1999-2003 (0.97, 0.95 to 0.99), with stable rates thereafter. The trend patterns for anencephaly and spina bifida were similar, but neither anomaly decreased substantially over time. The live birth prevalence of NTD generally decreased, especially for anencephaly. Registration problems or other data artefacts cannot be excluded as a partial explanation of the observed trends (or lack thereof) in the prevalence of NTD. What this study adds In the absence of mandatory fortification, the prevalence of NTD has not decreased in Europe despite longstanding recommendations aimed at promoting peri-conceptional folic acid supplementation and existence of voluntary folic acid fortification. Funding, competing interests, data sharing The study was funded by the European Public Health Commission, EUROCAT Joint Action 2011-2013. HD and ML received support from the European Commission DG Sanco during the conduct of this study. No additional data available.
Human Genetics | 1992
Anthonie J. van Essen; Stephen Abbs; Montserrat Baiget; Egbert Bakker; Catherine Boileau; Christine Van Broeckhoven; Kate Bushby; Angus John Clarke; Mireille Claustres; Angela Elvira Covone; Maurizio Ferrari; Alessandra Ferlini; Giuliana Galluzzi; Tiemo Grimm; Caroline Grubben; Marc Jeanpierre; Helena Kääriäinen; Sabina Liechti-Gallati; Marie A. Melis; Gert Jan B. van Ommen; Jaques E. Poncin; H Scheffer; Marianne Schwartz; Astrid Speer; Manfred Stuhrmann; Christine Verellen-Dumoulin; Douglas E. Wilcox; Leo P. ten Kate
SummaryKnowledge about the parental origin of new mutations and the occurrence of germline mosaicism is important for estimating recurrence risks in Duchenne (DMD) and Becker muscular dystrophy (BMD). However, there are problems in resolving these issues partly because not all mutations can as yet be directly detected, and additionally because genetic ratios are very sensitive to ascertainment bias. In the present study, therefore, analysis was restricted to currently detectable mutations (deletions and duplications) in particular types of families which tend to be rare. In order to obtain sufficient data we pooled results from 25 European centers. In mothers of affected patients who were the first in their family with a dystrophin gene deletion or duplication, the ratio between the paternal and the maternal origin of this new mutation was 32:49 (binomial test P = 0.075) for DMD. In five BMD families the ratio between paternal and maternal origin of new mutations was 3∶2. Recurrence risk because of maternal germline mosaicism was studied in sisters or subsequent sibs of isolated cases with an apparently new detectable mutation. In 12 out of 59 (0.20; 95% CI 0.10–0.31) transmissions of the risk haplotype the DMD mutation was transmitted as well. No recurrences were found in nine BMD families.
Genetics in Medicine | 2009
Renata de Lima; Sarah A Hoper; Michella Ghassibé; Margaret E. Cooper; Nicholas K. Rorick; Shinji Kondo; Lori Katz; Mary L Marazita; John Compton; Sherri J. Bale; Ute Hehr; Michael J. Dixon; Sandra Daack-Hirsch; Odile Boute; Bénédicte Bayet; N Revencu; Christine Verellen-Dumoulin; Miikka Vikkula; Antonio Richieri-Costa; Danilo Moretti-Ferreira; Jeffrey C. Murray; Brian C. Schutte
Purpose: Interferon regulatory factor 6 encodes a member of the IRF family of transcription factors. Mutations in interferon regulatory factor 6 cause Van der Woude and popliteal pterygium syndrome, two related orofacial clefting disorders. Here, we compared and contrasted the frequency and distribution of exonic mutations in interferon regulatory factor 6 between two large geographically distinct collections of families with Van der Woude and between one collection of families with popliteal pterygium syndrome.Methods: We performed direct sequence analysis of interferon regulatory factor 6 exons on samples from three collections, two with Van der Woude and one with popliteal pterygium syndrome.Results: We identified mutations in interferon regulatory factor 6 exons in 68% of families in both Van der Woude collections and in 97% of families with popliteal pterygium syndrome. In sum, 106 novel disease-causing variants were found. The distribution of mutations in the interferon regulatory factor 6 exons in each collection was not random; exons 3, 4, 7, and 9 accounted for 80%. In the Van der Woude collections, the mutations were evenly divided between protein truncation and missense, whereas most mutations identified in the popliteal pterygium syndrome collection were missense. Further, the missense mutations associated with popliteal pterygium syndrome were localized significantly to exon 4, at residues that are predicted to bind directly to DNA.Conclusion: The nonrandom distribution of mutations in the interferon regulatory factor 6 exons suggests a two-tier approach for efficient mutation screens for interferon regulatory factor 6. The type and distribution of mutations are consistent with the hypothesis that Van der Woude is caused by haploinsufficiency of interferon regulatory factor 6. On the other hand, the distribution of popliteal pterygium syndrome-associated mutations suggests a different, though not mutually exclusive, effect on interferon regulatory factor 6 function.