Christine Y. Turenne
Saskatchewan Disease Control Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christine Y. Turenne.
Journal of Clinical Microbiology | 2001
Christine Y. Turenne; Lorelee Tschetter; Joyce Wolfe; Amin Kabani
ABSTRACT The use of the 16S rRNA gene for identification of nontuberculous mycobacteria (NTM) provides a faster and better ability to accurately identify them in addition to contributing significantly in the discovery of new species. Despite their associated problems, many rely on the use of public sequence databases for sequence comparisons. To best evaluate the taxonomic status of NTM species submitted to our reference laboratory, we have created a 16S rRNA sequence database by sequencing 121 American Type Culture Collection strains encompassing 92 species of mycobacteria, and have also included chosen unique mycobacterial sequences from public sequence repositories. In addition, the Ribosomal Differentiation of Medical Microorganisms (RIDOM) service has made freely available on the Internet mycobacterial identification by 16S rRNA analysis. We have evaluated 122 clinical NTM species using our database, comparing >1,400 bp of the 16S gene, and the RIDOM database, comparing ∼440 bp. The breakdown of analysis was as follows: 61 strains had a sequence with 100% similarity to the type strain of an established species, 19 strains showed a 1- to 5-bp divergence from an established species, 11 strains had sequences corresponding to uncharacterized strain sequences in public databases, and 31 strains represented unique sequences. Our experience with analysis of the 16S rRNA gene of patient strains has shown that clear-cut results are not the rule. As many clinical, research, and environmental laboratories currently employ 16S-based identification of bacteria, including mycobacteria, a freely available quality-controlled database such as that provided by RIDOM is essential to accurately identify species or detect true sequence variations leading to the discovery of new species.
Journal of Clinical Microbiology | 2006
Christine Y. Turenne; Makeda Semret; Debby Cousins; Desmond M. Collins; Marcel A. Behr
ABSTRACT The Mycobacterium avium complex consists of epidemiologically distinct subsets. The classification of these subsets is complicated by a number of factors, including the ambiguous results obtained with phenotypic and genetic assays and the recent appreciation that human and avian strains appear to be distinct. In previous work, sequencing based on a 441-bp portion of the hsp65 gene has proven to efficiently classify isolates within the Mycobacterium genus but provides low resolution for distinguishing among members of the M. avium complex. Therefore, in this study, we have targeted the more variable 3′ region of the hsp65 gene to determine whether it can effectively discriminate M. avium complex isolates at the levels of species and subspecies. Primers designed for this target consistently generated amplicons for all organisms classified as M. avium complex. Sequences obtained indicate that M. intracellulare is genetically divergent from M. avium organisms, and distinct sequevars were obtained for M. avium subsets, including M. avium subsp. avium (bird type), M. avium subsp. hominissuis, and M. avium subsp. paratuberculosis. In addition, sequence differences served to distinguish bovine from ovine strains of M. avium subsp. paratuberculosis. A unique profile for M. avium subsp. silvaticum was not obtained. These results indicate that sequencing the 3′ region of the hsp65 gene can simply and unambiguously distinguish species and subspecies of the M. avium complex.
Journal of Bacteriology | 2008
Christine Y. Turenne; Desmond M. Collins; David C. Alexander; Marcel A. Behr
Mycobacterium avium comprises organisms that share the same species designation despite considerable genomic and phenotypic variability. To determine the degree and nature of variability between subspecies and strains of M. avium, we used multilocus sequencing analysis, studying 56 genetically diverse strains of M. avium that included all described subspecies. In total, 8,064 bp of sequence from 10 gene loci were studied, with 205 (2.5%) representing variable positions. The majority (149/205) of these variations were found among M. avium subsp. hominissuis organisms. Recombination was also evident in this subspecies. In contrast, there was comparatively little variability and no evidence of recombination within the pathogenic subspecies, M. avium subsp. paratuberculosis, M. avium subsp. avium, and M. avium subsp. silvaticum. Phylogenetic analysis showed that M. avium subsp. avium and M. avium subsp. silvaticum strains clustered together on one branch, while a distinct branch defined M. avium subsp. paratuberculosis organisms. Despite the independent origin of these pathogenic subspecies, an analysis of their rates of nonsynonymous (dN) to synonymous (dS) substitutions showed increased dN/dS ratios for both: 0.67 for M. avium subsp. paratuberculosis and 0.50 for M. avium subsp. avium/M. avium subsp. silvaticum, while the value was 0.08 for M. avium subsp. hominissuis organisms. In conclusion, M. avium subsp. hominissuis represents a diverse group of organisms from which two pathogenic clones (M. avium subsp. paratuberculosis and M. avium subsp. avium/M. avium subsp. silvaticum) have evolved independently.
Journal of Clinical Microbiology | 2013
Richard J. Wallace; Elena Iakhiaeva; Myra D. Williams; Barbara A. Brown-Elliott; Sruthi Vasireddy; Ravikiran Vasireddy; Leah Lande; Donald D. Peterson; Janet A. Sawicki; Rebecca Kwait; Wellington S. Tichenor; Christine Y. Turenne; Joseph O. Falkinham
ABSTRACT Recent studies have shown that respiratory isolates from pulmonary disease patients and household water/biofilm isolates of Mycobacterium avium could be matched by DNA fingerprinting. To determine if this is true for Mycobacterium intracellulare, household water sources for 36 patients with Mycobacterium avium complex (MAC) lung disease were evaluated. MAC household water isolates from three published studies that included 37 additional MAC respiratory disease patients were also evaluated. Species identification was done initially using nonsequencing methods with confirmation by internal transcribed spacer (ITS) and/or partial 16S rRNA gene sequencing. M. intracellulare was identified by nonsequencing methods in 54 respiratory cultures and 41 household water/biofilm samples. By ITS sequencing, 49 (90.7%) respiratory isolates were M. intracellulare and 4 (7.4%) were Mycobacterium chimaera. In contrast, 30 (73%) household water samples were M. chimaera, 8 (20%) were other MAC X species (i.e., isolates positive with a MAC probe but negative with species-specific M. avium and M. intracellulare probes), and 3 (7%) were M. avium; none were M. intracellulare. In comparison, M. avium was recovered from 141 water/biofilm samples. These results indicate that M. intracellulare lung disease in the United States is acquired from environmental sources other than household water. Nonsequencing methods for identification of nontuberculous mycobacteria (including those of the MAC) might fail to distinguish closely related species (such as M. intracellulare and M. chimaera). This is the first report of M. chimaera recovery from household water. The study underscores the importance of taxonomy and distinguishing the many species and subspecies of the MAC.
Journal of Clinical Microbiology | 2003
Victoria J. Cook; Christine Y. Turenne; Joyce Wolfe; Ryan J. Pauls; Amin Kabani
ABSTRACT The clinical profile of nontuberculous mycobacteria (NTM) has been raised by the human immunodeficiency virus and AIDS pandemic. Different laboratory techniques, often molecular based, are available to facilitate the rapid and accurate identification of NTM. The expense of these advanced techniques has been questioned. At the National Reference Center for Mycobacteriology and the Health Sciences Center, University of Manitoba, in Winnipeg, Canada, we performed a direct cost analysis of laboratory techniques for commercial DNA probe-negative (Gen-Probe, Inc., San Diego, Calif.), difficult-to-identify NTM. We compared the costs associated with conventional phenotypic methodology (biochemical testing, pigment production, growth, and colony characteristics) and genotypic methodology (16S ribosomal DNA [rDNA] sequence-based identification). We revealed a higher cost per sample with conventional methods, and this cost varied with organism characteristics:
Journal of Clinical Microbiology | 2006
Makeda Semret; Christine Y. Turenne; Petra E. W. de Haas; Desmond M. Collins; Marcel A. Behr
80.93 for slowly growing, biochemically active NTM;
Journal of Clinical Microbiology | 2005
Makeda Semret; David C. Alexander; Christine Y. Turenne; Petra E. W. de Haas; Pieter Overduin; Dick van Soolingen; Debby Cousins; Marcel A. Behr
173.23 for slowly growing, biochemically inert NTM; and
International Journal of Systematic and Evolutionary Microbiology | 2016
Enrico Tortoli; Thomas A. Kohl; Barbara A. Brown-Elliott; Alberto Trovato; Sylvia Cardoso Leão; Maria Jesus Garcia; Sruthi Vasireddy; Christine Y. Turenne; David E. Griffith; Julie V. Philley; Rossella Baldan; S. Campana; Lisa Cariani; Carla Colombo; G. Taccetti; Antonio Teri; Stefan Niemann; Richard J. Wallace; Daniela Maria Cirillo
129.40 for rapidly growing NTM. The cost per sample using 16S rDNA sequencing was
Journal of Clinical Microbiology | 2013
Barbara A. Brown-Elliott; Elena Iakhiaeva; David E. Griffith; Gail L. Woods; Jason E. Stout; Cameron R. Wolfe; Christine Y. Turenne; Richard J. Wallace
47.91 irrespective of organism characteristics, less than one-third of the expense associated with phenotypic identification of biochemically inert, slow growers. Starting with a pure culture, the turnaround time to species identification is 1 to 2 days for 16S rDNA sequencing compared to 2 to 6 weeks for biochemical testing. The accuracy of results comparing both methodologies is briefly discussed. 16S rDNA sequencing provides a cost-effective alternative in the identification of clinically relevant forms of probe-negative NTM. This concept is not only useful in mycobacteriology but also is highly applicable in other areas of clinical microbiology.
Journal of Clinical Microbiology | 2011
Barbara A. Brown-Elliott; Richard J. Wallace; Carmen Tichindelean; Juan C. Sarria; Steven McNulty; Ravikaran Vasireddy; Linda Bridge; C. Glenn Mayhall; Christine Y. Turenne; Michael J. Loeffelholz
ABSTRACT The Mycobacterium avium species consists of a group of organisms that are genetically related but phenotypically diverse, with certain variants presenting clear differences in terms of their host association and disease manifestations. The ability to distinguish between these subtypes is of relevance for accurate diagnosis and for control programs. Using a comparative genomics approach, we have uncovered large sequence polymorphisms that are, respectively, absent from bird-type M. avium isolates and from cattle types and sheep types of M. avium subsp. paratuberculosis. By evaluating the distribution of these genomic polymorphisms across a panel of strains, we were able to assign unique genomic signatures to these host-associated variants. We propose a simple PCR-based strategy based on these polymorphisms that can rapidly type M. avium isolates into these subgroups.
Collaboration
Dive into the Christine Y. Turenne's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs