Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christl A. Donnelly is active.

Publication


Featured researches published by Christl A. Donnelly.


PLOS Neglected Tropical Diseases | 2015

Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

Danilo O. Carvalho; Andrew R. McKemey; Luiza Garziera; Renaud Lacroix; Christl A. Donnelly; Luke Alphey; Aldo Malavasi; Margareth Lara Capurro

The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.


Science | 2016

Countering the Zika epidemic in Latin America

Neil M. Ferguson; Zulma M. Cucunubá; Ilaria Dorigatti; Gemma Nedjati-Gilani; Christl A. Donnelly; María-Gloria Basáñez; Pierre Nouvellet; Justin Lessler

Epidemic dynamics are key and data gaps must be addressed As evidence grew for a causal link between Zika infection and microcephaly and other serious congenital anomalies (1), the World Health Organization (WHO) declared the Latin American Zika epidemic a public health emergency of international concern in February 2016 (2). The speed of spread [see the figure, top, and the supplementary materials (SM)] has made effective public health responses challenging. Immediate responses have included vector control (3) and advice to delay pregnancy in a few countries (4), followed by an extended recommendation to all affected countries by WHO in June 2016. These have merits but are likely to have limited effectiveness (5) and may interact antagonistically. Fuller understanding of dynamics and drivers of the epidemic is needed to assess longer-term risks to prioritize interventions.


PLOS Medicine | 2016

Exposure Patterns Driving Ebola Transmission in West Africa: A Retrospective Observational Study.

Junerlyn Agua-Agum; Archchun Ariyarajah; Bruce Aylward; Luke Bawo; Pepe Bilivogui; Isobel M. Blake; Richard J. Brennan; Amy Cawthorne; Eilish Cleary; Peter Clement; Roland Conteh; Anne Cori; Foday Dafae; Benjamin A. Dahl; Jean-Marie Dangou; Boubacar Diallo; Christl A. Donnelly; Ilaria Dorigatti; Christopher Dye; Tim Eckmanns; Mosoka Fallah; Neil M. Ferguson; Lena Fiebig; Christophe Fraser; Tini Garske; Lice Gonzalez; Esther Hamblion; Nuha Hamid; Sara Hersey; Wes Hinsley

Background The ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved. Methods and Findings Over 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola (“cases”) were asked if they had exposure to other potential Ebola cases (“potential source contacts”) in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO’s response during the epidemic, and have been updated for publication. We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p < 0.001) between this proportion in a given district for a given month and the within-district transmission intensity, quantified by the estimated reproduction number (R). We also found a negative correlation (r = −0.37, p < 0.001) between R and the district proportion of hospitalised cases admitted within ≤4 days of symptom onset. These two proportions were not correlated, suggesting that reduced funeral attendance and faster hospitalisation independently influenced local transmission intensity. We were able to identify 14% of potential source contacts as cases in the case line-list. Linking cases to the contacts who potentially infected them provided information on the transmission network. This revealed a high degree of heterogeneity in inferred transmissions, with only 20% of cases accounting for at least 73% of new infections, a phenomenon often called super-spreading. Multivariable regression models allowed us to identify predictors of being named as a potential source contact. These were similar for funeral and non-funeral contacts: severe symptoms, death, non-hospitalisation, older age, and travelling prior to symptom onset. Non-funeral exposures were strongly peaked around the death of the contact. There was evidence that hospitalisation reduced but did not eliminate onward exposures. We found that Ebola treatment units were better than other health care facilities at preventing exposure from hospitalised and deceased individuals. The principal limitation of our analysis is limited data quality, with cases not being entered into the database, cases not reporting exposures, or data being entered incorrectly (especially dates, and possible misclassifications). Conclusions Achieving elimination of Ebola is challenging, partly because of super-spreading. Safe funeral practices and fast hospitalisation contributed to the containment of this Ebola epidemic. Continued real-time data capture, reporting, and analysis are vital to track transmission patterns, inform resource deployment, and thus hasten and maintain elimination of the virus from the human population.


Vaccine | 2015

Modelling the immunological response to a tetravalent dengue vaccine from multiple phase-2 trials in Latin America and South East Asia.

Ilaria Dorigatti; Ricardo Aguas; Christl A. Donnelly; Bruno Guy; Laurent Coudeville; Nicholas Jackson; Melanie Saville; Neil M. Ferguson

Background The most advanced dengue vaccine candidate is a live-attenuated recombinant vaccine containing the four dengue viruses on the yellow fever vaccine backbone (CYD-TDV) developed by Sanofi Pasteur. Several analyses have been published on the safety and immunogenicity of the CYD-TDV vaccine from single trials but none modelled the heterogeneity observed in the antibody responses elicited by the vaccine. Methods We analyse the immunogenicity data collected in five phase-2 trials of the CYD-TDV vaccine. We provide a descriptive analysis of the aggregated datasets and fit the observed post-vaccination PRNT50 titres against the four dengue (DENV) serotypes using multivariate regression models. Results We find that the responses to CYD-TDV are principally predicted by the baseline immunological status against DENV, but the trial is also a significant predictor. We find that the CYD-TDV vaccine generates similar titres against all serotypes following the third dose, though DENV4 is immunodominant after the first dose. Conclusions This study contributes to a better understanding of the immunological responses elicited by CYD-TDV. The recent availability of phase-3 data is a unique opportunity to further investigate the immunogenicity and efficacy of the CYD-TDV vaccine, especially in subjects with different levels of pre-existing immunity against DENV. Modelling multiple immunological outcomes with a single multivariate model offers advantages over traditional approaches, capturing correlations between response variables, and the statistical method adopted in this study can be applied to a variety of infections with interacting strains.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Unraveling the drivers of MERS-CoV transmission

Simon Cauchemez; Pierre Nouvellet; Anne Cori; Thibaut Jombart; Tini Garske; Hannah E. Clapham; Sean M. Moore; Harriet L. Mills; Henrik Salje; Caitlin Collins; Isabel Rodriquez-Barraquer; Steven Riley; Shaun Truelove; Homoud Algarni; Rafat F. Alhakeem; Khalid AlHarbi; Abdulhafiz M. Turkistani; Ricardo Aguas; Derek A. T. Cummings; Maria D. Van Kerkhove; Christl A. Donnelly; Justin Lessler; Christophe Fraser; Ali Albarrak; Neil M. Ferguson

Significance Since it was discovered in 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has infected more than 1,700 persons, one-third of whom died, essentially in the Middle East. Persons can get infected by direct or indirect contact with dromedary camels, and although human-to-human transmission is not self-sustaining in the Middle East, it can nonetheless generate large outbreaks, particular in hospital settings. Overall, we still poorly understand how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics. Here, we quantify the contribution of each of these factors from detailed records of MERS-CoV cases from the Kingdom of Saudi Arabia, which has been the most affected country. With more than 1,700 laboratory-confirmed infections, Middle East respiratory syndrome coronavirus (MERS-CoV) remains a significant threat for public health. However, the lack of detailed data on modes of transmission from the animal reservoir and between humans means that the drivers of MERS-CoV epidemics remain poorly characterized. Here, we develop a statistical framework to provide a comprehensive analysis of the transmission patterns underlying the 681 MERS-CoV cases detected in the Kingdom of Saudi Arabia (KSA) between January 2013 and July 2014. We assess how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics in KSA. We estimate that 12% [95% credible interval (CI): 9%, 15%] of cases were infected from the reservoir, the rest via human-to-human transmission in clusters (60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%; CI: 2%, 8%) regions. The reproduction number at the start of a cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53; CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by approximately one-half (47% CI: 34%, 63%) its original value after 10 cases on average. The ongoing exposure of humans to MERS-CoV from the reservoir is of major concern, given the continued risk of substantial outbreaks in health care systems. The approach we present allows the study of infectious disease transmission when data linking cases to each other remain limited and uncertain.


Ecology Letters | 2016

Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control.

Rosie Woodroffe; Christl A. Donnelly; Cally Ham; Seth Y. B. Jackson; Kelly Moyes; Kayna Chapman; Naomi G. Stratton; Samantha J. Cartwright

Effective management of infectious disease relies upon understanding mechanisms of pathogen transmission. In particular, while models of disease dynamics usually assume transmission through direct contact, transmission through environmental contamination can cause different dynamics. We used Global Positioning System (GPS) collars and proximity-sensing contact-collars to explore opportunities for transmission of Mycobacterium bovis [causal agent of bovine tuberculosis] between cattle and badgers (Meles meles). Cattle pasture was badgers most preferred habitat. Nevertheless, although collared cattle spent 2914 collar-nights in the home ranges of contact-collared badgers, and 5380 collar-nights in the home ranges of GPS-collared badgers, we detected no direct contacts between the two species. Simultaneous GPS-tracking revealed that badgers preferred land >xa050xa0m from cattle. Very infrequent direct contact indicates that badger-to-cattle and cattle-to-badger M.xa0bovis transmission may typically occur through contamination of the two species shared environment. This information should help to inform tuberculosis control by guiding both modelling and farm management.


Philosophical Transactions of the Royal Society B | 2017

Heterogeneities in the case fatality ratio in the West African Ebola outbreak 2013–2016

Tini Garske; Anne Cori; Archchun Ariyarajah; Isobel M. Blake; Ilaria Dorigatti; Tim Eckmanns; Christophe Fraser; Wes Hinsley; Thibaut Jombart; Harriet L. Mills; Gemma Nedjati-Gilani; Emily Newton; Pierre Nouvellet; Devin Perkins; Steven Riley; Dirk Schumacher; Anita Shah; Maria D. Van Kerkhove; Christopher Dye; Neil M. Ferguson; Christl A. Donnelly

The 2013–2016 Ebola outbreak in West Africa is the largest on record with 28 616 confirmed, probable and suspected cases and 11 310 deaths officially recorded by 10 June 2016, the true burden probably considerably higher. The case fatality ratio (CFR: proportion of cases that are fatal) is a key indicator of disease severity useful for gauging the appropriate public health response and for evaluating treatment benefits, if estimated accurately. We analysed individual-level clinical outcome data from Guinea, Liberia and Sierra Leone officially reported to the World Health Organization. The overall mean CFR was 62.9% (95% CI: 61.9% to 64.0%) among confirmed cases with recorded clinical outcomes. Age was the most important modifier of survival probabilities, but country, stage of the epidemic and whether patients were hospitalized also played roles. We developed a statistical analysis to detect outliers in CFR between districts of residence and treatment centres (TCs), adjusting for known factors influencing survival and identified eight districts and three TCs with a CFR significantly different from the average. From the current dataset, we cannot determine whether the observed variation in CFR seen by district or treatment centre reflects real differences in survival, related to the quality of care or other factors or was caused by differences in reporting practices or case ascertainment. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’.


Scientific Reports | 2016

Contact transmission of influenza virus between ferrets imposes a looser bottleneck than respiratory droplet transmission allowing propagation of antiviral resistance.

Rebecca Frise; Konrad Bradley; Neeltje van Doremalen; Monica Galiano; Ruth A. Elderfield; Peter Stilwell; Jonathan W. Ashcroft; Mirian Fernandez-Alonso; Shahjahan Miah; Angie Lackenby; Kim L. Roberts; Christl A. Donnelly; Wendy S. Barclay

Influenza viruses cause annual seasonal epidemics and occasional pandemics. It is important to elucidate the stringency of bottlenecks during transmission to shed light on mechanisms that underlie the evolution and propagation of antigenic drift, host range switching or drug resistance. The virus spreads between people by different routes, including through the air in droplets and aerosols, and by direct contact. By housing ferrets under different conditions, it is possible to mimic various routes of transmission. Here, we inoculated donor animals with a mixture of two viruses whose genomes differed by one or two reverse engineered synonymous mutations, and measured the transmission of the mixture to exposed sentinel animals. Transmission through the air imposed a tight bottleneck since most recipient animals became infected by only one virus. In contrast, a direct contact transmission chain propagated a mixture of viruses suggesting the dose transferred by this route was higher. From animals with a mixed infection of viruses that were resistant and sensitive to the antiviral drug oseltamivir, resistance was propagated through contact transmission but not by air. These data imply that transmission events with a looser bottleneck can propagate minority variants and may be an important route for influenza evolution.


PLOS Pathogens | 2016

Revealing the Micro-scale Signature of Endemic Zoonotic Disease Transmission in an African Urban Setting

Hervé Bourhy; Emmanuel Nakouné; Matthew D. Hall; Pierre Nouvellet; Anthony Lepelletier; Chiraz Talbi; Laurence Watier; Edward C. Holmes; Simon Cauchemez; Philippe Lemey; Christl A. Donnelly; Andrew Rambaut

The development of novel approaches that combine epidemiological and genomic data provides new opportunities to reveal the spatiotemporal dynamics of infectious diseases and determine the processes responsible for their spread and maintenance. Taking advantage of detailed epidemiological time series and viral sequence data from more than 20 years reported by the National Reference Centre for Rabies of Bangui, the capital city of Central African Republic, we used a combination of mathematical modeling and phylogenetic analysis to determine the spatiotemporal dynamics of rabies in domestic dogs as well as the frequency of extinction and introduction events in an African city. We show that although dog rabies virus (RABV) appears to be endemic in Bangui, its epidemiology is in fact shaped by the regular extinction of local chains of transmission coupled with the introduction of new lineages, generating successive waves of spread. Notably, the effective reproduction number during each wave was rarely above the critical value of 1, such that rabies is not self-sustaining in Bangui. In turn, this suggests that rabies at local geographic scales is driven by human-mediated dispersal of RABV among sparsely connected peri-urban and rural areas as opposed to dispersion in a relatively large homogenous urban dog population. This combined epidemiological and genomic approach enables development of a comprehensive framework for understanding disease persistence and informing control measures, indicating that control measures are probably best targeted towards areas neighbouring the city that appear as the source of frequent incursions seeding outbreaks in Bangui.


Parasites & Vectors | 2017

Assessing the interruption of the transmission of human helminths with mass drug administration alone: optimizing the design of cluster randomized trials

Roy M. Anderson; Sam H. Farrell; Hugo C. Turner; Judd L. Walson; Christl A. Donnelly; James E. Truscott

BackgroundA method is outlined for the use of an individual-based stochastic model of parasite transmission dynamics to assess different designs for a cluster randomized trial in which mass drug administration (MDA) is employed in attempts to eliminate the transmission of soil-transmitted helminths (STH) in defined geographic locations. The hypothesis to be tested is: Can MDA alone interrupt the transmission of STH species in defined settings? Clustering is at a village level and the choice of clusters of villages is stratified by transmission intensity (low, medium and high) and parasite species mix (either Ascaris, Trichuris or hookworm dominant).ResultsThe methodological approach first uses an age-structured deterministic model to predict the MDA coverage required for treating pre-school aged children (Pre-SAC), school aged children (SAC) and adults (Adults) to eliminate transmission (crossing the breakpoint in transmission created by sexual mating in dioecious helminths) with 3 rounds of annual MDA. Stochastic individual-based models are then used to calculate the positive and negative predictive values (PPV and NPV, respectively, for observing elimination or the bounce back of infection) for a defined prevalence of infection 2xa0years post the cessation of MDA. For the arm only involving the treatment of Pre-SAC and SAC, the failure rate is predicted to be very high (particularly for hookworm-infected villages) unless transmission intensity is very low (R0, or the effective reproductive number R, just above unity in value).ConclusionsThe calculations are designed to consider various trial arms and stratifications; namely, community-based treatment and Pre-SAC and SAC only treatment (the two arms of the trial), different STH transmission settings of low, medium and high, and different STH species mixes. Results are considered in the light of the complications introduced by the choice of statistic to define success or failure, varying adherence to treatment, migration and parameter uncertainty.

Collaboration


Dive into the Christl A. Donnelly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tini Garske

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Anne Cori

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosie Woodroffe

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar

Steven Riley

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge