Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christof Appenzeller is active.

Publication


Featured researches published by Christof Appenzeller.


Nature | 2004

The role of increasing temperature variability in European summer heatwaves.

Christoph Schär; Pier Luigi Vidale; Daniel Lüthi; Christoph Frei; Christian Häberli; Mark A. Liniger; Christof Appenzeller

Instrumental observations and reconstructions of global and hemispheric temperature evolution reveal a pronounced warming during the past ∼150 years. One expression of this warming is the observed increase in the occurrence of heatwaves. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small. Here we show that this framework fails to explain the record-breaking central European summer temperatures in 2003, although it is consistent with observations from previous years. We find that an event like that of summer 2003 is statistically extremely unlikely, even when the observed warming is taken into account. We propose that a regime with an increased variability of temperatures (in addition to increases in mean temperature) may be able to account for summer 2003. To test this proposal, we simulate possible future European climate with a regional climate model in a scenario with increased atmospheric greenhouse-gas concentrations, and find that temperature variability increases by up to 100%, with maximum changes in central and eastern Europe.


Journal of Climate | 2010

Risks of Model Weighting in Multimodel Climate Projections

Andreas P. Weigel; Reto Knutti; Mark A. Liniger; Christof Appenzeller

Multimodel combination is a pragmatic approach to estimating model uncertainties and to making climate projections more reliable. The simplest way of constructing a multimodel is to give one vote to each model (‘‘equal weighting’’), while more sophisticated approaches suggest applying model weights according to some measure of performance (‘‘optimum weighting’’). In this study, a simple conceptual model of climate change projections is introduced and applied to discuss the effects of model weighting in more generic terms. The results confirm that equally weighted multimodels on average outperform the single models, and that projection errors can in principle be further reduced by optimum weighting. However, this not only requires accurate knowledge of the single model skill, but the relative contributions of the joint model error and unpredictable noise also need to be known to avoid biased weights. If weights are applied that do not appropriatelyrepresentthetrueunderlyinguncertainties,weightedmultimodelsperformonaverageworsethan equally weighted ones, which is a scenario that is not unlikely, given that at present there is no consensus on how skill-basedweights can be obtained.Particularly when internal variabilityis large, more information may be lost by inappropriate weighting than could potentially be gained by optimum weighting. These results indicate that for many applications equal weighting may be the safer and more transparent way to combine models. However, also within the presented framework eliminating models from an ensemble can be justified if they are known to lack key mechanisms that are indispensable for meaningful climate projections.


Monthly Weather Review | 2007

The Discrete Brier and Ranked Probability Skill Scores

Andreas P. Weigel; Mark A. Liniger; Christof Appenzeller

Abstract The Brier skill score (BSS) and the ranked probability skill score (RPSS) are widely used measures to describe the quality of categorical probabilistic forecasts. They quantify the extent to which a forecast strategy improves predictions with respect to a (usually climatological) reference forecast. The BSS can thereby be regarded as the special case of an RPSS with two forecast categories. From the work of Muller et al., it is known that the RPSS is negatively biased for ensemble prediction systems with small ensemble sizes, and that a debiased version, the RPSSD, can be obtained quasi empirically by random resampling from the reference forecast. In this paper, an analytical formula is derived to directly calculate the RPSS bias correction for any ensemble size and combination of probability categories, thus allowing an easy implementation of the RPSSD. The correction term itself is identified as the “intrinsic unreliability” of the ensemble prediction system. The performance of this new formula...


Bulletin of the American Meteorological Society | 2009

MAP D-PHASE: Real-Time Demonstration of Weather Forecast Quality in the Alpine Region

Mathias W. Rotach; Paolo Ambrosetti; Felix Ament; Christof Appenzeller; Marco Arpagaus; Hans-Stefan Bauer; Andreas Behrendt; François Bouttier; Andrea Buzzi; Matteo Corazza; Silvio Davolio; Michael Denhard; Manfred Dorninger; Lionel Fontannaz; Jacqueline Frick; Felix Fundel; Urs Germann; Theresa Gorgas; Christiph Hegg; Aalessandro Hering; Christian Keil; Mark A. Liniger; Chiara Marsigli; Ron McTaggart-Cowan; Andrea Montaini; Ken Mylne; Roberto Ranzi; Evelyne Richard; Andrea Rossa; Daniel Santos-Muñoz

Demonstration of probabilistic hydrological and atmospheric simulation of flood events in the Alpine region (D-PHASE) is made by the Forecast Demonstration Project in connection with the Mesoscale Alpine Programme (MAP). Its focus lies in the end-to-end flood forecasting in a mountainous region such as the Alps and surrounding lower ranges. Its scope ranges from radar observations and atmospheric and hydrological modeling to the decision making by the civil protection agents. More than 30 atmospheric high-resolution deterministic and probabilistic models coupled to some seven hydrological models in various combinations provided real-time online information. This information was available for many different catchments across the Alps over a demonstration period of 6 months in summer/ fall 2007. The Web-based exchange platform additionally contained nowcasting information from various operational services and feedback channels for the forecasters and end users. D-PHASE applications include objective model verification and intercomparison, the assessment of (subjective) end user feedback, and evaluation of the overall gain from the coupling of the various components in the end-to-end forecasting system.


Monthly Weather Review | 2009

Seasonal Ensemble Forecasts: Are Recalibrated Single Models Better than Multimodels?

Andreas P. Weigel; Mark A. Liniger; Christof Appenzeller

Abstract Multimodel ensemble combination (MMEC) has become an accepted technique to improve probabilistic forecasts from short- to long-range time scales. MMEC techniques typically widen ensemble spread, thus improving the dispersion characteristics and the reliability of the forecasts. This raises the question as to whether the same effect could be achieved in a potentially cheaper way by rescaling single model ensemble forecasts a posteriori such that they become reliable. In this study a climate conserving recalibration (CCR) technique is derived and compared with MMEC. With a simple stochastic toy model it is shown that both CCR and MMEC successfully improve forecast reliability. The difference between these two methods is that CCR conserves resolution but inevitably dilutes the potentially predictable signal while MMEC is in the ideal case able to fully retain the predictable signal and to improve resolution. Therefore, MMEC is conceptually to be preferred, particularly since the effect of CCR depend...


Weather and Forecasting | 2004

Analysis of the Spread–Skill Relations Using the ECMWF Ensemble Prediction System over Europe

Simon C. Scherrer; Christof Appenzeller; Pierre Eckert; Daniel Cattani

Abstract The Ensemble Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) was used to analyze various aspects of the ensemble-spread forecast-skill relation. It was shown that synoptic-scale upper-air spread measures can be used as first estimators of local forecast skill, although the relation was weaker than expected. The synoptic-scale spread measures were calculated based on upper-air fields (Z500 and T850) over western Europe for the period June 1997 to December 2000. The spread–skill relations for the operational ECMWF EPS were tested using several different spread definitions including a neural network-based measure. It was shown that spreads based on upper-air root-mean-square (rms) measures showed a strong seasonal cycle unlike anomaly correlation (AC)-based measures. The deseasonalized spread–skill correlations for the upper-air fields were found to be useful even for longer lead times (168–240 h). Roughly 68%–83% of small or large spread was linked to the c...


Monthly Weather Review | 2010

Calibrated Precipitation Forecasts for a Limited-Area Ensemble Forecast System Using Reforecasts

Felix Fundel; André Walser; Mark A. Liniger; Christoph Frei; Christof Appenzeller

Abstract The calibration of numerical weather forecasts using reforecasts has been shown to increase the skill of weather predictions. Here, the precipitation forecasts from the Consortium for Small Scale Modeling Limited Area Ensemble Prediction System (COSMO-LEPS) are improved using a 30-yr-long set of reforecasts. The probabilistic forecasts are calibrated on the exceedance of return periods, independently from available observations. Besides correcting for systematic model errors, the spatial and temporal variability in the amplitude of rare precipitation events is implicitly captured when issuing forecasts of return periods. These forecast products are especially useful for issuing warnings of upcoming events. A way to visualize those calibrated ensemble forecasts conveniently for end users and to present verification results of the return period–based forecasts for Switzerland is proposed. It is presented that, depending on the lead time and return period, calibrating COSMO-LEPS with reforecasts inc...


Journal of Applied Meteorology and Climatology | 2010

Improved Estimates of the European Winter Windstorm Climate and the Risk of Reinsurance Loss Using Climate Model Data

Paul M. Della-Marta; Mark A. Liniger; Christof Appenzeller; David N. Bresch; Pamela Köllner-Heck; Veruska Muccione

Abstract Current estimates of the European windstorm climate and their associated losses are often hampered by either relatively short, coarse resolution or inhomogeneous datasets. This study tries to overcome some of these shortcomings by estimating the European windstorm climate using dynamical seasonal-to-decadal (s2d) climate forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). The current s2d models have limited predictive skill of European storminess, making the ensemble forecasts ergodic samples on which to build pseudoclimates of 310–396 yr in length. Extended winter (October–April) windstorm climatologies are created using scalar extreme wind indices considering only data above a high threshold. The method identifies up to 2363 windstorms in s2d data and up to 380 windstorms in the 40-yr ECMWF Re-Analysis (ERA-40). Classical extreme value analysis (EVA) techniques are used to determine the windstorm climatologies. Differences between the ERA-40 and s2d windstorm climatol...


Monthly Weather Review | 2008

Probabilistic Verification of Monthly Temperature Forecasts

Andreas P. Weigel; Daniel Baggenstos; Mark A. Liniger; Frédéric Vitart; Christof Appenzeller

Abstract Monthly forecasting bridges the gap between medium-range weather forecasting and seasonal predictions. While such forecasts in the prediction range of 1–4 weeks are vital to many applications in the context of weather and climate risk management, surprisingly little has been published on the actual monthly prediction skill of existing global circulation models. Since 2004, the European Centre for Medium-Range Weather Forecasts has operationally run a dynamical monthly forecasting system (MOFC). It is the aim of this study to provide a systematic and fully probabilistic evaluation of MOFC prediction skill for weekly averaged forecasts of surface temperature in dependence of lead time, region, and season. This requires the careful setup of an appropriate verification context, given that the verification period is short and ensemble sizes small. This study considers the annual cycle of operational temperature forecasts issued in 2006, as well as the corresponding 12 yr of reforecasts (hindcasts). Th...


Monthly Weather Review | 2007

Generalization of the Discrete Brier and Ranked Probability Skill Scores for Weighted Multimodel Ensemble Forecasts

Andreas P. Weigel; Mark A. Liniger; Christof Appenzeller

Abstract This note describes how the widely used Brier and ranked probability skill scores (BSS and RPSS, respectively) can be correctly applied to quantify the potential skill of probabilistic multimodel ensemble forecasts. It builds upon the study of Weigel et al. where a revised RPSS, the so-called discrete ranked probability skill score (RPSSD), was derived, circumventing the known negative bias of the RPSS for small ensemble sizes. Since the BSS is a special case of the RPSS, a debiased discrete Brier skill score (BSSD) could be formulated in the same way. Here, the approach of Weigel et al., which so far was only applicable to single model ensembles, is generalized to weighted multimodel ensemble forecasts. By introducing an “effective ensemble size” characterizing the multimodel, the new generalized RPSSD can be expressed such that its structure becomes equivalent to the single model case. This is of practical importance for multimodel assessment studies, where the consequences of varying effective...

Collaboration


Dive into the Christof Appenzeller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Wilhelms

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Hans Oerter

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge