Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christof Bartels is active.

Publication


Featured researches published by Christof Bartels.


Science | 2009

Probing the Angular Momentum Character of the Valence Orbitals of Free Sodium Nanoclusters

Christof Bartels; Christian Hock; Jan Huwer; R. Kuhnen; J. Schwöbel; B. von Issendorff

Although many properties of polyatomic metal clusters have been rationalized by an electron shell model resembling that used for free atoms, it remained unclear how reliable this analogy is with respect to the angular momentum eigenstate character of the electronic wave functions. We studied free size-selected negatively charged clusters of sodium atoms (Nan–) of approximately spherical shape (n = 19, 40, 55, 58, 147) by angle-resolved photoelectron spectroscopy over a broad range of photon energies (1.5 to 5 electron volts). Highly anisotropic, state- and energy-dependent angular distributions emerged for all sizes. Well-defined classes of energy dependence related to the approximate angular momenta of the bound-state orbitals indicate that the overall character of the valence electron wave functions is not appreciably influenced by the interaction with the ion background. The measured distributions nevertheless deviate strongly from the predictions of single-electron models, hinting at a distinct role of correlated multielectron effects in the photoemission process.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Observation of orientation-dependent electron transfer in molecule–surface collisions

Nils Bartels; Kai Golibrzuch; Christof Bartels; Li Chen; Daniel J. Auerbach; Alec M. Wodtke; Tim Schäfer

Significance How molecules point in space—that is, their spatial orientation—determines how they interact with their environment. Exchange of energy, photons, and particles as well as chemical reactions are all elementary processes that depend on orientation. Electron transfer reactions are of particular interest because of their importance in a remarkably wide range of phenomena. In this work, we examine electron transfer reactions at surfaces, which control the change of oxidation state in surface chemistry, a critical factor explaining catalytic activity and selectivity. We report a strong orientation dependence for vibrational relaxation of a diatomic molecule colliding with a metal surface, an energy transfer process driven by electron transfer. These observations represent a challenge to modern theories of surface chemistry. Molecules typically must point in specific relative directions to participate efficiently in energy transfer and reactions. For example, Förster energy transfer favors specific relative directions of each molecule’s transition dipole [Förster T (1948) Ann Phys 2(1-2):55–75] and electron transfer between gas-phase molecules often depends on the relative orientation of orbitals [Brooks PR, et al. (2007) J Am Chem Soc 129(50):15572–15580]. Surface chemical reactions can be many orders of magnitude faster than their gas-phase analogs, a fact that underscores the importance of surfaces for catalysis. One reason surface reactions can be so fast is the labile change of oxidation state that commonly takes place upon adsorption, a process involving electron transfer between a solid metal and an approaching molecule. By transferring electrons to or from the adsorbate, the process of bond weakening and/or cleavage is initiated, chemically activating the reactant [Yoon B, et al. (2005) Science 307(5708):403–407]. Here, we show that the vibrational relaxation of NO—an example of electronically nonadiabatic energy transfer that is driven by an electron transfer event [Gadzuk JW (1983) J Chem Phys 79(12):6341–6348]—is dramatically enhanced when the molecule approaches an Au(111) surface with the N atom oriented toward the surface. This represents a rare opportunity to investigate the steric influences on an electron transfer reaction happening at a surface.


Angewandte Chemie | 2012

Multiquantum Vibrational Excitation of NO Scattered from Au(111): Quantitative Comparison of Benchmark Data to Ab Initio Theories of Nonadiabatic Molecule–Surface Interactions

Russell Cooper; Christof Bartels; Alexander Kandratsenka; Igor Rahinov; Neil Shenvi; Kai Golibrzuch; Zhisheng Li; Daniel J. Auerbach; John C. Tully; Alec M. Wodtke

Surface phenomena: measurements of absolute probabilities are reported for the vibrational excitation of NO(v=0→1,2) molecules scattered from a Au(111) surface. These measurements were quantitatively compared to calculations based on ab initio theoretical approaches to electronically nonadiabatic molecule-surface interactions. Good agreement was found between theory and experiment (see picture; T(s) =surface temperature, P=excitation probability, and E=incidence energy of translation).


Journal of Chemical Physics | 2012

On the determination of absolute vibrational excitation probabilities in molecule-surface scattering: Case study of NO on Au(111).

Russell Cooper; Zhisheng Li; Kai Golibrzuch; Christof Bartels; Igor Rahinov; Daniel J. Auerbach; Alec M. Wodtke

We describe a method to obtain absolute vibrational excitation probabilities of molecules scattering from a surface based on measurements of the rotational state, scattering angle, and temporal distributions of the scattered molecules and apply this method to the vibrational excitation of NO scattering from Au(111). We report the absolute excitation probabilities to the v = 1 and v = 2 vibrational states, rotational excitation distributions, and final scattering angle distributions for a wide range of incidence energies and surface temperatures. In addition to demonstrating the methodology for obtaining absolute scattering probabilities, these results provide an excellent benchmark for theoretical calculations of molecule-surface scattering.


Journal of Chemical Physics | 2014

Dynamical steering in an electron transfer surface reaction: Oriented NO(v = 3, 0.08 < Ei < 0.89 eV) relaxation in collisions with a Au(111) surface

Nils Bartels; Kai Golibrzuch; Christof Bartels; Li Chen; Daniel J. Auerbach; Alec M. Wodtke; Tim Schäfer

We report measurements of the incidence translational energy dependence of steric effects in collisions of NO(v = 3) molecules with a Au(111) surface using a recently developed technique to orient beams of vibrationally excited NO molecules at incidence energies of translation between 0.08 and 0.89 eV. Incidence orientation dependent vibrational state distributions of scattered molecules are detected by means of resonance enhanced multiphoton ionization spectroscopy. Molecules oriented with the N-end towards the surface exhibit a higher vibrational relaxation probability than those oriented with the O-end towards the surface. This strong orientation dependence arises from the orientation dependence of the underlying electron transfer reaction responsible for the vibrational relaxation. At reduced incidence translational energy, we observe a reduced steric effect. This reflects dynamical steering and re-orientation of the NO molecule upon its approach to the surface.


Journal of Physical Chemistry A | 2013

State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.

Kai Golibrzuch; Pranav R. Shirhatti; Jan Altschäffel; Igor Rahinov; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels

Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.


Journal of Chemical Physics | 2014

The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: A combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface

Kai Golibrzuch; Pranav R. Shirhatti; Igor Rahinov; Alexander Kandratsenka; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels

We present a combined experimental and theoretical study of NO(v = 3 → 3, 2, 1) scattering from a Au(111) surface at incidence translational energies ranging from 0.1 to 1.2 eV. Experimentally, molecular beam-surface scattering is combined with vibrational overtone pumping and quantum-state selective detection of the recoiling molecules. Theoretically, we employ a recently developed first-principles approach, which employs an Independent Electron Surface Hopping (IESH) algorithm to model the nonadiabatic dynamics on a Newns-Anderson Hamiltonian derived from density functional theory. This approach has been successful when compared to previously reported NO/Au scattering data. The experiments presented here show that vibrational relaxation probabilities increase with incidence energy of translation. The theoretical simulations incorrectly predict high relaxation probabilities at low incidence translational energy. We show that this behavior originates from trajectories exhibiting multiple bounces at the surface, associated with deeper penetration and favored (N-down) molecular orientation, resulting in a higher average number of electronic hops and thus stronger vibrational relaxation. The experimentally observed narrow angular distributions suggest that mainly single-bounce collisions are important. Restricting the simulations by selecting only single-bounce trajectories improves agreement with experiment. The multiple bounce artifacts discovered in this work are also present in simulations employing electronic friction and even for electronically adiabatic simulations, meaning they are not a direct result of the IESH algorithm. This work demonstrates how even subtle errors in the adiabatic interaction potential, especially those that influence the interaction time of the molecule with the surface, can lead to an incorrect description of electronically nonadiabatic vibrational energy transfer in molecule-surface collisions.


Journal of Physical Chemistry A | 2013

Experimental and theoretical study of multi-quantum vibrational excitation: NO(v = 0→1,2,3) in collisions with Au(111).

Kai Golibrzuch; Alexander Kandratsenka; Igor Rahinov; Russell Cooper; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels

We measured absolute probabilities for vibrational excitation of NO(v = 0) molecules in collisions with a Au(111) surface at an incidence energy of translation of 0.4 eV and surface temperatures between 300 and 1100 K. In addition to previously reported excitation to v = 1 and v = 2, we observed excitation to v = 3. The excitation probabilities exhibit an Arrhenius dependence on surface temperature, indicating that the dominant excitation mechanism is nonadiabatic coupling to electron-hole pairs. The experimental data are analyzed in terms of a recently introduced kinetic model, which was extended to include four vibrational states. We describe a subpopulation decomposition of the kinetic model, which allows us to examine vibrational population transfer pathways. The analysis indicates that sequential pathways (v = 0 → 1 → 2 and v = 0 → 1 → 2 → 3) alone cannot adequately describe production of v = 2 or 3. In addition, we performed first-principles molecular dynamics calculations that incorporate electronically nonadiabatic dynamics via an independent electron surface hopping (IESH) algorithm, which requires as input an ab initio potential energy hypersurface (PES) and nonadiabatic coupling matrix elements, both obtained from density functional theory (DFT). While the IESH-based simulations reproduce the v = 1 data well, they slightly underestimate the excitation probabilities for v = 2, and they significantly underestimate those for v = 3. Furthermore, this implementation of IESH appears to overestimate the importance of sequential energy transfer pathways. We make several suggestions concerning ways to improve this IESH-based model.


Physical Chemistry Chemical Physics | 2014

Incidence energy dependent state-to-state time-of-flight measurements of NO(v=3) collisions with Au(111): the fate of incidence vibrational and translational energy.

Kai Golibrzuch; Pranav R. Shirhatti; Igor Rahinov; Daniel J. Auerbach; Alec M. Wodtke; Christof Bartels

We report measurements of translational energy distributions when scattering NO(vi = 3, Ji = 1.5) from a Au(111) surface into vibrational states vf = 1, 2, 3 and rotational states up to Jf = 32.5 for various incidence energies ranging from 0.11 eV to 0.98 eV. We observed that the vibration-to-translation as well as the translation-to-rotation coupling depend on translational incidence energy, EI. The vibration-to-translation coupling, i.e. the additional recoil energy observed for vibrationally inelastic (v = 3 → 2, 1) scattering, is seen to increase with increasing EI. The final translational energy decreases approximately linearly with increasing rotational excitation. At incidence energies EI > 0.5 eV, the slopes of these dependencies are constant and identical for the three vibrational channels. At lower incidence energies, the slopes gradually approach zero for the vibrationally elastic channel while they exhibit more abrupt transitions for the vibrationally inelastic channels. We discuss possible mechanisms for both effects within the context of nonadiabatic electron-hole pair mediated energy transfer and orientation effects.


Journal of Chemical Physics | 2014

Electron hole pair mediated vibrational excitation in CO scattering from Au(111): Incidence energy and surface temperature dependence

Pranav R. Shirhatti; Jörn Werdecker; Kai Golibrzuch; Alec M. Wodtke; Christof Bartels

We investigated the translational incidence energy (Ei) and surface temperature (Ts) dependence of CO vibrational excitation upon scattering from a clean Au(111) surface. We report absolute v = 0 → 1 excitation probabilities for Ei between 0.16 and 0.84 eV and Ts between 473 and 973 K. This is now only the second collision system where such comprehensive measurements are available - the first is NO on Au(111). For CO on Au(111), vibrational excitation occurs via direct inelastic scattering through electron hole pair mediated energy transfer - it is enhanced by incidence translation and the electronically non-adiabatic coupling is about 5 times weaker than in NO scattering from Au(111). Vibrational excitation via the trapping desorption channel dominates at Ei = 0.16 eV and quickly disappears at higher Ei.

Collaboration


Dive into the Christof Bartels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Rahinov

Open University of Israel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge