Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christof Koch is active.

Publication


Featured researches published by Christof Koch.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 1998

A model of saliency-based visual attention for rapid scene analysis

Laurent Itti; Christof Koch; Ernst Niebur

A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented. Multiscale image features are combined into a single topographical saliency map. A dynamical neural network then selects attended locations in order of decreasing saliency. The system breaks down the complex problem of scene understanding by rapidly selecting, in a computationally efficient manner, conspicuous locations to be analyzed in detail.


Human neurobiology | 1987

Shifts in selective visual attention: towards the underlying neural circuitry

Christof Koch; Shimon Ullman

Psychophysical and physiological evidence indicates that the visual system of primates and humans has evolved a specialized processing focus moving across the visual scene. This study addresses the question of how simple networks of neuron-like elements can account for a variety of phenomena associated with this shift of selective visual attention. Specifically, we propose the following: (1) A number of elementary features, such as color, orientation, direction of movement, disparity etc. are represented in parallel in different topographical maps, called the early representation. (2) There exists a selective mapping from the early topographic representation into a more central non-topographic representation, such that at any instant the central representation contains the properties of only a single location in the visual scene, the selected location. We suggest that this mapping is the principal expression of early selective visual attention. One function of selective attention is to fuse information from different maps into one coherent whole. (3) Certain selection rules determine which locations will be mapped into the central representation. The major rule, using the conspicuity of locations in the early representation, is implemented using a so-called Winner-Take-All network. Inhibiting the selected location in this network causes an automatic shift towards the next most conspicious location. Additional rules are proximity and similarity preferences. We discuss how these rules can be implemented in neuron-like networks and suggest a possible role for the extensive back-projection from the visual cortex to the LGN.


Vision Research | 2000

A saliency-based search mechanism for overt and covert shifts of visual attention

Laurent Itti; Christof Koch

Most models of visual search, whether involving overt eye movements or covert shifts of attention, are based on the concept of a saliency map, that is, an explicit two-dimensional map that encodes the saliency or conspicuity of objects in the visual environment. Competition among neurons in this map gives rise to a single winning location that corresponds to the next attended target. Inhibiting this location automatically allows the system to attend to the next most salient location. We describe a detailed computer implementation of such a scheme, focusing on the problem of combining information across modalities, here orientation, intensity and color information, in a purely stimulus-driven manner. The model is applied to common psychophysical stimuli as well as to a very demanding visual search task. Its successful performance is used to address the extent to which the primate visual system carries out visual search via one or more such saliency maps and how this can be tested.


Nature Reviews Neuroscience | 2012

The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

György Buzsáki; Costas A. Anastassiou; Christof Koch

Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.


Neural Networks | 2006

2006 Special Issue: Modeling attention to salient proto-objects

Dirk Walther; Christof Koch

Selective visual attention is believed to be responsible for serializing visual information for recognizing one object at a time in a complex scene. But how can we attend to objects before they are recognized? In coherence theory of visual cognition, so-called proto-objects form volatile units of visual information that can be accessed by selective attention and subsequently validated as actual objects. We propose a biologically plausible model of forming and attending to proto-objects in natural scenes. We demonstrate that the suggested model can enable a model of object recognition in cortex to expand from recognizing individual objects in isolation to sequentially recognizing all objects in a more complex scene.


Nature | 2005

Invariant visual representation by single neurons in the human brain

R. Quian Quiroga; Leila Reddy; Gabriel Kreiman; Christof Koch; I. Fried

It takes a fraction of a second to recognize a person or an object even when seen under strikingly different conditions. How such a robust, high-level representation is achieved by neurons in the human brain is still unclear. In monkeys, neurons in the upper stages of the ventral visual pathway respond to complex images such as faces and objects and show some degree of invariance to metric properties such as the stimulus size, position and viewing angle. We have previously shown that neurons in the human medial temporal lobe (MTL) fire selectively to images of faces, animals, objects or scenes. Here we report on a remarkable subset of MTL neurons that are selectively activated by strikingly different pictures of given individuals, landmarks or objects and in some cases even by letter strings with their names. These results suggest an invariant, sparse and explicit code, which might be important in the transformation of complex visual percepts into long-term and more abstract memories.


Nature | 2012

An anatomically comprehensive atlas of the adult human brain transcriptome

Michael Hawrylycz; Ed Lein; Angela L. Guillozet-Bongaarts; Elaine H. Shen; Lydia Ng; Jeremy A. Miller; Louie N. van de Lagemaat; Kimberly A. Smith; Amanda Ebbert; Zackery L. Riley; Chris Abajian; Christian F. Beckmann; Amy Bernard; Darren Bertagnolli; Andrew F. Boe; Preston M. Cartagena; M. Mallar Chakravarty; Mike Chapin; Jimmy Chong; Rachel A. Dalley; Barry Daly; Chinh Dang; Suvro Datta; Nick Dee; Tim Dolbeare; Vance Faber; David Feng; David Fowler; Jeff Goldy; Benjamin W. Gregor

Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function.


Nature | 2014

A mesoscale connectome of the mouse brain

Seung Wook Oh; Julie A. Harris; Lydia Ng; Brent Winslow; Nicholas Cain; Stefan Mihalas; Quanxin Wang; Chris Lau; Leonard Kuan; Alex Henry; Marty T. Mortrud; Benjamin Ouellette; Thuc Nghi Nguyen; Staci A. Sorensen; Clifford R. Slaughterbeck; Wayne Wakeman; Yang Li; David Feng; Anh Ho; Eric Nicholas; Karla E. Hirokawa; Phillip Bohn; Kevin M. Joines; Hanchuan Peng; Michael Hawrylycz; John Phillips; John G. Hohmann; Paul Wohnoutka; Charles R. Gerfen; Christof Koch

Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.


Trends in Cognitive Sciences | 2007

Attention and consciousness: two distinct brain processes

Christof Koch; Naotsugu Tsuchiya

The close relationship between attention and consciousness has led many scholars to conflate these processes. This article summarizes psychophysical evidence, arguing that top-down attention and consciousness are distinct phenomena that need not occur together and that can be manipulated using distinct paradigms. Subjects can become conscious of an isolated object or the gist of a scene despite the near absence of top-down attention; conversely, subjects can attend to perceptually invisible objects. Furthermore, top-down attention and consciousness can have opposing effects. Such dissociations are easier to understand when the different functions of these two processes are considered. Untangling their tight relationship is necessary for the scientific elucidation of consciousness and its material substrate.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Rapid natural scene categorization in the near absence of attention

Fei Fei Li; Rufin VanRullen; Christof Koch; Pietro Perona

What can we see when we do not pay attention? It is well known that we can be “blind” even to major aspects of natural scenes when we attend elsewhere. The only tasks that do not need attention appear to be carried out in the early stages of the visual system. Contrary to this common belief, we report that subjects can rapidly detect animals or vehicles in briefly presented novel natural scenes while simultaneously performing another attentionally demanding task. By comparison, they are unable to discriminate large Ts from Ls, or bisected two-color disks from their mirror images under the same conditions. We conclude that some visual tasks associated with “high-level” cortical areas may proceed in the near absence of attention.

Collaboration


Dive into the Christof Koch's collaboration.

Top Co-Authors

Avatar

Francis Crick

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Costas A. Anastassiou

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Laurent Itti

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Tomaso Poggio

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Itzhak Fried

University of California

View shared research outputs
Top Co-Authors

Avatar

Pietro Perona

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Giulio Tononi

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Rufin VanRullen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jochen Braun

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge