Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christof Niehrs is active.

Publication


Featured researches published by Christof Niehrs.


Nature | 1998

Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction

Andrei Glinka; Wei Wu; Hajo Delius; A. Paula Monaghan; Claudia Blumenstock; Christof Niehrs

The Spemann organizer in amphibian embryos is a tissue with potent head-inducing activity, the molecular nature of which is unresolved. Here we describe dickkopf-1 (dkk-1), which encodes Dkk-1, a secreted inducer of Spemanns organizer in Xenopus and a member of a new protein family. Injections of mRNA and antibody indicate that dkk-1 is sufficient and necessary to cause head induction. dkk-1 is a potent antagonist of Wnt signalling, suggesting that dkk genes encode a family of secreted Wnt inhibitors.


Nature | 2001

LDL-receptor-related protein 6 is a receptor for Dickkopf proteins

Bingyu Mao; Wei Wu; Yan Li; Dana Hoppe; Peter Stannek; Andrei Glinka; Christof Niehrs

Wnt glycoproteins have been implicated in diverse processes during embryonic patterning in metazoa. They signal through frizzled-type seven-transmembrane-domain receptors to stabilize β-catenin. Wnt signalling is antagonized by the extracellular Wnt inhibitor dickkopf1 (dkk1), which is a member of a multigene family. dkk1 was initially identified as a head inducer in Xenopus embryos but the mechanism by which it blocks Wnt signalling is unknown. LDL-receptor-related protein 6 (LRP6) is required during Wnt/β-catenin signalling in Drosophila, Xenopus and mouse, possibly acting as a co-receptor for Wnt. Here we show that LRP6 (ref. 7) is a specific, high-affinity receptor for Dkk1 and Dkk2. Dkk1 blocks LRP6-mediated Wnt/β-catenin signalling by interacting with domains that are distinct from those required for Wnt/Frizzled interaction. dkk1 and LRP6 interact antagonistically during embryonic head induction in Xenopus where LRP6 promotes the posteriorizing role of Wnt/β-catenin signalling. Thus, DKKs inhibit Wnt co-receptor function, exemplifying the modulation of LRP signalling by antagonists.


Nature | 2002

Kremen proteins are Dickkopf receptors that regulate Wnt/|[beta]|-catenin signalling

Bingyu Mao; Wei Wu; Gary Davidson; Joachim Marhold; Mingfa Li; Bernard M. Mechler; Hajo Delius; Dana Hoppe; Peter Stannek; Carmen Walter; Andrei Glinka; Christof Niehrs

The Wnt family of secreted glycoproteins mediate cell–cell interactions during cell growth and differentiation in both embryos and adults. Canonical Wnt signalling by way of the β-catenin pathway is transduced by two receptor families. Frizzled proteins and lipoprotein-receptor-related proteins 5 and 6 (LRP5/6) bind Wnts and transmit their signal by stabilizing intracellular β-catenin. Wnt/β-catenin signalling is inhibited by the secreted protein Dickkopf1 (Dkk1), a member of a multigene family, which induces head formation in amphibian embryos. Dkk1 has been shown to inhibit Wnt signalling by binding to and antagonizing LRP5/6. Here we show that the transmembrane proteins Kremen1 and Kremen2 are high-affinity Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt/β-catenin signalling. Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. The results indicate that Kremen1 and Kremen2 are components of a membrane complex modulating canonical Wnt signalling through LRP6 in vertebrates.


Nature | 2007

Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation

Guillermo Barreto; Andrea Schäfer; Joachim Marhold; Dirk Stach; Suresh Kumar Swaminathan; Vikas Handa; Gabi Döderlein; Nicole Maltry; Wei Wu; Frank Lyko; Christof Niehrs

DNA methylation is an epigenetic modification that is essential for gene silencing and genome stability in many organisms. Although methyltransferases that promote DNA methylation are well characterized, the molecular mechanism underlying active DNA demethylation is poorly understood and controversial. Here we show that Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha), a nuclear protein involved in maintenance of genomic stability, DNA repair and suppression of cell growth, has a key role in active DNA demethylation. Gadd45a overexpression activates methylation-silenced reporter plasmids and promotes global DNA demethylation. Gadd45a knockdown silences gene expression and leads to DNA hypermethylation. During active demethylation of oct4 in Xenopus laevis oocytes, Gadd45a is specifically recruited to the site of demethylation. Active demethylation occurs by DNA repair and Gadd45a interacts with and requires the DNA repair endonuclease XPG. We conclude that Gadd45a relieves epigenetic gene silencing by promoting DNA repair, which erases methylation marks.


Science | 2007

Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation.

Josipa Bilić; Ya Lin Huang; Gary Davidson; Timo Zimmermann; Cristina Maria Cruciat; Mariann Bienz; Christof Niehrs

Multiple signaling pathways, including Wnt signaling, participate in animal development, stem cell biology, and human cancer. Although many components of the Wnt pathway have been identified, unresolved questions remain as to the mechanism by which Wnt binding to its receptors Frizzled and Low-density lipoprotein receptor–related protein 6 (LRP6) triggers downstream signaling events. With live imaging of vertebrate cells, we show that Wnt treatment quickly induces plasma membrane–associated LRP6 aggregates. LRP6 aggregates are phosphorylated and can be detergent-solubilized as ribosome-sized multiprotein complexes. Phospho-LRP6 aggregates contain Wnt-pathway components but no common vesicular traffic markers except caveolin. The scaffold protein Dishevelled (Dvl) is required for LRP6 phosphorylation and aggregation. We propose that Wnts induce coclustering of receptors and Dvl in LRP6-signalosomes, which in turn triggers LRP6 phosphorylation to promote Axin recruitment and β-catenin stabilization.


Nature | 1999

Silencing of TGF-beta signalling by the pseudoreceptor BAMBI

Darya Onichtchouk; Ye Guang Chen; Roland Dosch; Volker Gawantka; Hajo Delius; Joan Massagué; Christof Niehrs

Members of the transforming growth factor-β (TGF-β) superfamily, including TGF-β, bone morphogenetic proteins (BMPs), activins and nodals, are vital for regulating growth and differentiation. These growth factors transduce their signals through pairs of transmembrane type I and type II receptor kinases. Here, we have cloned a transmembrane protein, BAMBI, which is related to TGF-β-family type I receptors but lacks an intracellular kinase domain. We show that BAMBI is co-expressed with the ventralizing morphogen BMP4 (refs 5, 6) during Xenopus embryogenesis and that it requires BMP signalling for its expression. The protein stably associates with TGF-β-family receptors and inhibits BMP and activin as well as TGF-β signalling. Finally, we provide evidence that BAMBIs inhibitory effects are mediated by its intracellular domain, which resembles the homodimerization interface of a type I receptor and prevents the formation of receptor complexes. The results indicate that BAMBI negatively regulates TGF-β-family signalling by a regulatory mechanism involving the interaction of signalling receptors with a pseudoreceptor.


Developmental Cell | 2001

Dickkopf1 Is Required for Embryonic Head Induction and Limb Morphogenesis in the Mouse

Mahua Mukhopadhyay; Svetlana Shtrom; Concepción Rodríguez-Esteban; Lan Chen; Tohru Tsukui; Lauren Gomer; David W. Dorward; Andrei Glinka; Alexander Grinberg; Sing Ping Huang; Christof Niehrs; Juan Carlos Izpisua Belmonte; Heiner Westphal

Dickkopf1 (Dkk1) is a secreted protein that acts as a Wnt inhibitor and, together with BMP inhibitors, is able to induce the formation of ectopic heads in Xenopus. Here, we show that Dkk1 null mutant embryos lack head structures anterior of the midbrain. Analysis of chimeric embryos implicates the requirement of Dkk1 in anterior axial mesendoderm but not in anterior visceral endoderm for head induction. In addition, mutant embryos show duplications and fusions of limb digits. Characterization of the limb phenotype strongly suggests a role for Dkk1 both in cell proliferation and in programmed cell death. Our data provide direct genetic evidence for the requirement of secreted Wnt antagonists during embryonic patterning and implicate Dkk1 as an essential inducer during anterior specification as well as a regulator during distal limb patterning.


Nature Reviews Molecular Cell Biology | 2012

The complex world of WNT receptor signalling

Christof Niehrs

30 years after the identification of WNTs, their signal transduction has become increasingly complex, with the discovery of more than 15 receptors and co-receptors in seven protein families. The recent discovery of three receptor classes for the R-spondin family of WNT agonists further adds to this complexity. What emerges is an intricate network of receptors that form higher-order ligand–receptor complexes routing downstream signalling. These are regulated both extracellularly by agonists such as R-spondin and intracellularly by post-translational modifications such as phosphorylation, proteolytic processing and endocytosis.


Nature | 2005

Casein kinase 1γ couples Wnt receptor activation to cytoplasmic signal transduction

Gary Davidson; Wei Wu; Jinlong Shen; Josipa Bilić; Ursula Fenger; Peter Stannek; Andrei Glinka; Christof Niehrs

Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/β-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 γ (CK1γ), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1γ is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1γ is required during anterio-posterior patterning to promote posteriorizing Wnt/β-catenin signalling. CK1γ is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1γ-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus.


Journal of Bone and Mineral Research | 2006

Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass

Frederic Morvan; Kim E. Boulukos; Philippe Clément-Lacroix; Sergio Roman Roman; Isabelle Suc-Royer; Béatrice Vayssière; Patrick Ammann; Patrick Martin; Sonia Pinho; Philippe Pognonec; Patrick Mollat; Christof Niehrs; Roland Baron; Georges Rawadi

Wnt/β‐catenin signaling has been proven to play a central role in bone biology. Unexpectedly, the Wnt antagonist Dkk2 is required for terminal osteoblast differentiation and mineralized matrix formation. We show that Dkk1, unlike Dkk2, negatively regulates osteoblast differentiation and bone formation.

Collaboration


Dive into the Christof Niehrs's collaboration.

Top Co-Authors

Avatar

Michael Musheev

Armenian National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Smith

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Meng Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Mokry

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Glinka

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Wei Wu

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge