Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christof Thalhammer is active.

Publication


Featured researches published by Christof Thalhammer.


Journal of Magnetic Resonance Imaging | 2012

Two-Dimensional Sixteen Channel Transmit/Receive Coil Array for Cardiac MRI at 7.0 T: Design, Evaluation, and Application

Christof Thalhammer; Wolfgang Renz; Lukas Winter; Fabian Hezel; Jan Rieger; Harald Pfeiffer; Andreas Graessl; F. Seifert; Werner Hoffmann; Florian von Knobelsdorff-Brenkenhoff; Valeriy Tkachenko; Jeanette Schulz-Menger; Peter Kellman; Thoralf Niendorf

To design, evaluate, and apply a 2D 16‐channel transmit/receive (TX/RX) coil array tailored for cardiac magnetic resonance imaging (MRI) at 7.0 T.


Journal of Magnetic Resonance | 2013

Progress and promises of human cardiac magnetic resonance at ultrahigh fields: A physics perspective

Thoralf Niendorf; Andreas Graessl; Christof Thalhammer; Matthias A. Dieringer; Oliver Kraus; Davide Santoro; Katharina Fuchs; Fabian Hezel; Sonia Waiczies; Bernd Ittermann; Lukas Winter

A growing number of reports eloquently speak about explorations into cardiac magnetic resonance (CMR) at ultrahigh magnetic fields (B0≥7.0 T). Realizing the progress, promises and challenges of ultrahigh field (UHF) CMR this perspective outlines current trends in enabling MR technology tailored for cardiac MR in the short wavelength regime. For this purpose many channel radiofrequency (RF) technology concepts are outlined. Basic principles of mapping and shimming of transmission fields including RF power deposition considerations are presented. Explorations motivated by the safe operation of UHF-CMR even in the presence of conductive implants are described together with the physics, numerical simulations and experiments, all of which detailing antenna effects and RF heating induced by intracoronary stents at 7.0 T. Early applications of CMR at 7.0 T and their clinical implications for explorations into cardiovascular diseases are explored including assessment of cardiac function, myocardial tissue characterization, MR angiography of large and small vessels as well as heteronuclear MR of the heart and the skin. A concluding section ventures a glance beyond the horizon and explores future directions. The goal here is not to be comprehensive but to inspire the biomedical and diagnostic imaging communities to throw further weight behind the solution of the many remaining unsolved problems and technical obstacles of UHF-CMR with the goal to transfer MR physics driven methodological advancements into extra clinical value.


European Journal of Radiology | 2013

Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T.

Andreas Gräßl; Lukas Winter; Christof Thalhammer; Wolfgang Renz; Peter Kellman; Conrad Martin; Florian von Knobelsdorff-Brenkenhoff; Valeriy Tkachenko; Jeanette Schulz-Menger; Thoralf Niendorf

The objective of this work is to design, examine and apply an eight channel transmit/receive coil array tailored for cardiac magnetic resonance imaging at 7.0 T that provides image quality suitable for clinical use, patient comfort, and ease of use. The cardiac coil array was designed to consist of a planar posterior section and a modestly curved anterior section. For radio frequency (RF) safety validation, numerical computations of the electromagnetic field (EMF) and the specific absorption rate (SAR) distribution were conducted. In vivo cardiac imaging was performed using a 2D CINE FLASH technique. For signal-to-noise ratio (SNR) assessment reconstructed images were scaled in SNR units. The parallel imaging capabilities of the coil were examined using GRAPPA and SENSE reconstruction with reduction factors of up to R=4. The assessment of the RF characteristics yielded a maximum noise correlation of 0.33. The baseline SNR advantage at 7.0 T was put to use to acquire 2D CINE images of the heart with a spatial resolution of 1 mm × 1 mm × 4 mm. The coil array supports 1D acceleration factors of up to R=3 without impairing image quality significantly. For un-accelerated 2D CINE FLASH acquisitions the results revealed an SNR of approximately 140 for the left ventricular blood pool. Blood/myocardium contrast was found to be approximately 90 for un-accelerated 2D CINE FLASH acquisitions. The proposed 8 channel cardiac transceiver surface coil has the capability to acquire high contrast, high spatial and temporal resolution in vivo images of the heart at 7.0 T.


PLOS ONE | 2012

High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 Tesla: an ultrahigh field magnetic resonance feasibility study.

Fabian Hezel; Christof Thalhammer; Sonia Waiczies; Jeanette Schulz-Menger; Thoralf Niendorf

Myocardial tissue characterization using T2 * relaxation mapping techniques is an emerging application of (pre)clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T2 * mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T2 * imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T2 * mapping. In phantom experiments single cardiac phase and dynamic (CINE) gradient echo imaging techniques provided similar T2 * maps. In vivo studies showed that the peak-to-peak B0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T2 * weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T2 * values were found for anterior (T2 * = 14.0 ms), anteroseptal (T2 * = 17.2 ms) and inferoseptal (T2 * = 16.5 ms) myocardial segments. Shorter T2 * values were observed for inferior (T2 * = 10.6 ms) and inferolateral (T2 * = 11.4 ms) segments. A significant difference (p = 0.002) in T2 * values was observed between end-diastole and end-systole with T2 * changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T2 * mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes.


Journal of Cardiovascular Magnetic Resonance | 2013

Assessment of the right ventricle with cardiovascular magnetic resonance at 7 Tesla

Florian von Knobelsdorff-Brenkenhoff; Valeriy Tkachenko; Lukas Winter; Jan Rieger; Christof Thalhammer; Fabian Hezel; Andreas Graessl; Matthias A. Dieringer; Thoralf Niendorf; Jeanette Schulz-Menger

BackgroundFunctional and morphologic assessment of the right ventricle (RV) is of clinical importance. Cardiovascular magnetic resonance (CMR) at 1.5T has become gold standard for RV chamber quantification and assessment of even small wall motion abnormalities, but tissue analysis is still hampered by limited spatial resolution. CMR at 7T promises increased resolution, but is technically challenging. We examined the feasibility of cine imaging at 7T to assess the RV.MethodsNine healthy volunteers underwent CMR at 7T using a 16-element TX/RX coil and acoustic cardiac gating. 1.5T served as gold standard. At 1.5T, steady-state free-precession (SSFP) cine imaging with voxel size (1.2x1.2x6) mm3 was used; at 7T, fast gradient echo (FGRE) with voxel size (1.2x1.2x6) mm3 and (1.3x1.3x4) mm3 were applied. RV dimensions (RVEDV, RVESV), RV mass (RVM) and RV function (RVEF) were quantified in transverse slices. Overall image quality, image contrast and image homogeneity were assessed in transverse and sagittal views.ResultsAll scans provided diagnostic image quality. Overall image quality and image contrast of transverse RV views were rated equally for SSFP at 1.5T and FGRE at 7T with voxel size (1.3x1.3x4)mm3. FGRE at 7T provided significantly lower image homogeneity compared to SSFP at 1.5T. RVEDV, RVESV, RVEF and RVM did not differ significantly and agreed close between SSFP at 1.5T and FGRE at 7T (p=0.5850; p=0.5462; p=0.2789; p=0.0743). FGRE at 7T with voxel size (1.3x1.3x4) mm3 tended to overestimate RV volumes compared to SSFP at 1.5T (mean difference of RVEDV 8.2±9.3ml) and to FGRE at 7T with voxel size (1.2x1.2x6) mm3 (mean difference of RVEDV 9.3±8.6ml).ConclusionsFGRE cine imaging of the RV at 7T was feasible and provided good image quality. RV dimensions and function were comparable to SSFP at 1.5T as gold standard.


PLOS ONE | 2015

On the subjective acceptance during cardiovascular magnetic resonance imaging at 7.0 Tesla

Sabrina Klix; Antje Els; Andreas Graessl; Celal Oezerdem; Oliver Weinberger; Lukas Winter; Christof Thalhammer; Till Huelnhagen; Jan Rieger; Heidrun Mehling; Jeanette Schulz-Menger; Thoralf Niendorf

Purpose This study examines the subjective acceptance during UHF-CMR in a cohort of healthy volunteers who underwent a cardiac MR examination at 7.0T. Methods Within a period of two-and-a-half years (January 2012 to June 2014) a total of 165 healthy volunteers (41 female, 124 male) without any known history of cardiac disease underwent UHF-CMR. For the assessment of the subjective acceptance a questionnaire was used to examine the participants experience prior, during and after the UHF-CMR examination. For this purpose, subjects were asked to respond to the questionnaire in an exit interview held immediately after the completion of the UHF-CMR examination under supervision of a study nurse to ensure accurate understanding of the questions. All questions were answered with “yes” or “no” including space for additional comments. Results Transient muscular contraction was documented in 12.7% of the questionnaires. Muscular contraction was reported to occur only during periods of scanning with the magnetic field gradients being rapidly switched. Dizziness during the study was reported by 12.7% of the subjects. Taste of metal was reported by 10.1% of the study population. Light flashes were reported by 3.6% of the entire cohort. 13% of the subjects reported side effects/observations which were not explicitly listed in the questionnaire but covered by the question about other side effects. No severe side effects as vomiting or syncope after scanning occurred. No increase in heart rate was observed during the UHF-CMR exam versus the baseline clinical examination. Conclusions This study adds to the literature by detailing the subjective acceptance of cardiovascular magnetic resonance imaging examinations at a magnetic field strength of 7.0T. Cardiac MR examinations at 7.0T are well tolerated by healthy subjects. Broader observational and multi-center studies including patient cohorts with cardiac diseases are required to gain further insights into the subjective acceptance of UHF-CMR examinations.


Journal of Cardiovascular Magnetic Resonance | 2013

High spatial and temporal myocardial CINE T2* mapping at 7.0 T: a feasibility study

Fabian Hezel; Christof Thalhammer; Sonia Waiczies; Jeanette Schulz-Menger; Thoralf Niendorf

Background Myocardial tissue characterization using T2* relaxation mapping techniques is an emerging application of clinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T2* mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T2* imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T2* mapping. Methods Imaging was conducted using a 7.0 T whole body MR scanner (Magnetom, Siemens Healthcare Erlangen) together with a 16 channel TX/RX coil array on 8 healthy subjects without any known history of cardiac disease. 9 CINE datasets were acquired with echo times ranging from 2.04ms to 10.20ms with a interleaved multi-shot multi-echo gradient echo technique over three breath holds. Other imaging parameters were set to: flip angle=20°, acquisition data matrix=256x224, FOV=(288x252)mm2, in-plane resolution=(1.1x1.1)mm2, slice thickness=4mm and acceleration using GRAPPA (R=3). Prior to T2* mapping, volume selective B0 shimming was conducted to reduce static magnetic field inhomogeneities. Results After volume selective shimming, a mean peak-to-peak B0 difference of approximately 80 Hz was found across the entire heart for a four chamber view and a mid-ventricular short axis view of the heart (Fig1). The through plane field gradient at the myocardium/epicardial fat/lung interface was found to be much more pronounced versus the through-plane field gradient obtained for the left and right ventricle as illustrated in Fig. 1. The latter showed a mean of 3 Hz/mm, which translates into an through-plane B0 dispersion of approximately 12 Hz/voxel for a 4 mm slice thickness. This B0 gradient implies that macroscopic intravoxel dephasing effects are of minor effect for the TE range used. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T2* weighting. For TE>7ms, a signal void (related to susceptibility weighting) was observed within the anterior and inferior myocardial segments. The longest T2* values were found for anterior (T2*=14.0 ms), anteroseptal (T2*=17.2 ms) and inferoseptal (T2*=16.5 ms) myocardial segments. Shorter T2* values were observed for inferior (T2*=10.6 ms) and inferolateral (T2*=11.4 ms) segments. A significant difference (p=0.002) in T2* values was observed between end-diastole and endsystole as illustrated in Figure 2. T2* changes of up to approximately 27% were observed across the cardiac cycle. Cardiac cycle dependent T2* changes were pronounced in the septum. Conclusions Our results underscore the challenges of myocardial T2* mapping at 7.0 T due to the propensity to macroscopic susceptibility artefacts and T2* shortening, but demonstrate that these issues can be offset by using tailored shimming techniques together with dedicated acquisition schemes.


PLOS ONE | 2016

High Spatial Resolution Cardiovascular Magnetic Resonance at 7.0 Tesla in Patients with Hypertrophic Cardiomyopathy – First Experiences: Lesson Learned from 7.0 Tesla

Marcel Prothmann; Florian von Knobelsdorff-Brenkenhoff; Agnieszka Töpper; Matthias A. Dieringer; Etham Shahid; Andreas Graessl; Jan Rieger; Darius Lysiak; Christof Thalhammer; Till Huelnhagen; Peter Kellman; Thoralf Niendorf; Jeanette Schulz-Menger

Background Cardiovascular Magnetic Resonance (CMR) provides valuable information in patients with hypertrophic cardiomyopathy (HCM) based on myocardial tissue differentiation and the detection of small morphological details. CMR at 7.0T improves spatial resolution versus today’s clinical protocols. This capability is as yet untapped in HCM patients. We aimed to examine the feasibility of CMR at 7.0T in HCM patients and to demonstrate its capability for the visualization of subtle morphological details. Methods We screened 131 patients with HCM. 13 patients (9 males, 56 ±31 years) and 13 healthy age- and gender-matched subjects (9 males, 55 ±31years) underwent CMR at 7.0T and 3.0T (Siemens, Erlangen, Germany). For the assessment of cardiac function and morphology, 2D CINE imaging was performed (voxel size at 7.0T: (1.4x1.4x2.5) mm3 and (1.4x1.4x4.0) mm3; at 3.0T: (1.8x1.8x6.0) mm3). Late gadolinium enhancement (LGE) was performed at 3.0T for detection of fibrosis. Results All scans were successful and evaluable. At 3.0T, quantification of the left ventricle (LV) showed similar results in short axis view vs. the biplane approach (LVEDV, LVESV, LVMASS, LVEF) (p = 0.286; p = 0.534; p = 0.155; p = 0.131). The LV-parameters obtained at 7.0T where in accordance with the 3.0T data (pLVEDV = 0.110; pLVESV = 0.091; pLVMASS = 0.131; pLVEF = 0.182). LGE was detectable in 12/13 (92%) of the HCM patients. High spatial resolution CINE imaging at 7.0T revealed hyperintense regions, identifying myocardial crypts in 7/13 (54%) of the HCM patients. All crypts were located in the LGE-positive regions. The crypts were not detectable at 3.0T using a clinical protocol. Conclusions CMR at 7.0T is feasible in patients with HCM. High spatial resolution gradient echo 2D CINE imaging at 7.0T allowed the detection of subtle morphological details in regions of extended hypertrophy and LGE.


Journal of Cardiovascular Magnetic Resonance | 2013

Comparison of three multichannel TX/RX coils for anatomic and functional CMR at 7.0T

Lukas Winter; Peter Kellman; Wolfgang Renz; Andreas Graessl; Fabian Hezel; Christof Thalhammer; F. von Knobelsdorff-Brenkenhoff; Valeriy Tkachenko; J. Schulz-Menger; Thoralf Niendorf

Background Ultrahigh field cardiac MR (CMR) is an area of vigorous ongoing research and is regarded as one of the most challenging MRI applications since image quality is not always exclusively defined by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The progress in the field has been driven by pioneering explorations into hardware developments which focused on novel multichannel transmit and receive coil arrays technology to tackle the challenges of B1-field inhomogeneities. Consequently, transmit-receive (TX/RX) structures are not a nicety but a necessity for ultrahigh field CMR including a trend towards a large number of transmit and receive channels. For all these reasons, this study was designed to compare the quality of anatomical and functional CMR at 7.0 T under clinical aspects using cardiac optimized transceive coils that use loop structures with the number of TX/RX elements ranging from 4-16. Methods


Journal of Cardiovascular Magnetic Resonance | 2015

Cardiovascular magnetic resonance at 7.0 Tesla in patients with hypertrophic cardiomyopathy - a pilot study

Marcel Prothmann; Etham Shahid; Agnieszka Toepper; Florian von Knobelsdorff-Brenkenhoff; Andreas Graessl; Jan Rieger; Darius Lysiak; Christof Thalhammer; Till Huelnhagen; Thoralf Niendorf; Jeanette Schulz-Menger

Background Cardiovascular Magnetic Resonance (CMR) is known to offer additional morphologic information in Hypertrophic Cardiomyopathy (HCM). CMR based myocardial tissue differentiation and the detection of small morphological details is of proven clinical value. MR at a magnetic field strength of 7 Tesla holds the promise to enhance spatial resolution and anatomical detail, but is currently primarily

Collaboration


Dive into the Christof Thalhammer's collaboration.

Top Co-Authors

Avatar

Thoralf Niendorf

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Andreas Graessl

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Lukas Winter

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Jan Rieger

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Till Huelnhagen

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Fabian Hezel

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Antje Els

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Celal Oezerdem

Max Delbrück Center for Molecular Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge