Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christofer Troedsson is active.

Publication


Featured researches published by Christofer Troedsson.


PLOS ONE | 2014

Characterization of the 18s rRNA gene for designing universal eukaryote specific primers

Kenan Hadziavdic; Katrine Lekang; Anders Lanzén; Inge Jonassen; Eric M. Thompson; Christofer Troedsson

High throughput sequencing technology has great promise for biodiversity studies. However, an underlying assumption is that the primers used in these studies are universal for the prokaryotic or eukaryotic groups of interest. Full primer universality is difficult or impossible to achieve and studies using different primer sets make biodiversity comparisons problematic. The aim of this study was to design and optimize universal eukaryotic primers that could be used as a standard in future biodiversity studies. Using the alignment of all eukaryotic sequences from the publicly available SILVA database, we generated a full characterization of variable versus conserved regions in the 18S rRNA gene. All variable regions within this gene were analyzed and our results suggested that the V2, V4 and V9 regions were best suited for biodiversity assessments. Previously published universal eukaryotic primers as well as a number of self-designed primers were mapped to the alignment. Primer selection will depend on sequencing technology used, and this study focused on the 454 pyrosequencing GS FLX Titanium platform. The results generated a primer pair yielding theoretical matches to 80% of the eukaryotic and 0% of the prokaryotic sequences in the SILVA database. An empirical test of marine sediments using the AmpliconNoise pipeline for analysis of the high throughput sequencing data yielded amplification of sequences for 71% of all eukaryotic phyla with no isolation of prokaryotic sequences. To our knowledge this is the first characterization of the complete 18S rRNA gene using all eukaryotes present in the SILVA database, providing a robust test for universal eukaryotic primers. Since both in silico and empirical tests using high throughput sequencing retained high inclusion of eukaryotic phyla and exclusion of prokaryotes, we conclude that these primers are well suited for assessing eukaryote diversity, and can be used as a standard in biodiversity studies.


Marine Biology | 2009

Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR)

Christofer Troedsson; Paolo Simonelli; Verena Nägele; Jens C. Nejstgaard; Marc E. Frischer

Quantification of feeding rates and selectivity of zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, methodological limitations have made many of these studies difficult. Recently, molecular based methods have demonstrated that DNA from prey species can be used to identify zooplankton gut contents, and further, quantitative gut content estimates by quantitative PCR (qPCR) assays targeted to the 18S rRNA gene have been used to estimate feeding rates in appendicularians and copepods. However, while standard single primer based qPCR assays were quantitative for the filter feeding appendicularian Oikopleura dioica, feeding rates were consistently underestimated in the copepod Calanus finmarchicus. In this study, we test the hypothesis that prey DNA is rapidly digested after ingestion by copepods and describe a qPCR-based assay, differential length amplification qPCR (dla-qPCR), to account for DNA digestion. The assay utilizes multiple primer sets that amplify different sized fragments of the prey 18S rRNA gene and, based on the differential amplification of these fragments, the degree of digestion is estimated and corrected for. Application of this approach to C. finmarchicus fed Rhodomonas marina significantly improved quantitative feeding estimates compared to standard qPCR. The development of dla-qPCR represents a significant advancement towards a quantitative method for assessing in situ copepod feeding rates without involving cultivation-based manipulation.


Journal of Plankton Research | 2009

Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica

Jean-Marie Bouquet; Endy Spriet; Christofer Troedsson; Helen Otterå; Daniel Chourrout; Eric M. Thompson

The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. At 70 Mb, the compact, sequenced genome ranks among the smallest known metazoan genomes, with both gene regulatory and intronic regions highly reduced in size. The organism occupies an important trophic role in marine ecosystems and is a significant contributor to global vertical carbon flux. Among the short list of bona fide biological model organisms, all share the property that they are amenable to long-term maintenance in laboratory cultures. Here, we tested diet regimes, spawn densities and dilutions and seawater treatment, leading to optimization of a detailed culture protocol that permits sustainable long-term maintenance of O. dioica, allowing continuous, uninterrupted production of source material for experimentation. The culture protocol can be quickly adapted in both coastal and inland laboratories and should promote rapid development of the many original research perspectives the animal offers.


Journal of Biological Chemistry | 2001

Molecular patterning of the oikoplastic epithelium of the larvacean tunicate Oikopleura dioica.

Fabio Spada; Hanno Steen; Christofer Troedsson; Torben Kallesøe; Endy Spriet; Matthias Mann; Eric M. Thompson

Appendicularia are protochordates that rely on a complex mucous secretion, the house, to filter food particles from seawater. A monolayer of cells covering the trunk of the animal, the oikoplastic epithelium, secretes the house. This epithelium contains a fixed number of cells arranged in characteristic patterns with distinct sizes and nuclear morphologies. Certain house structures appear to be spatially related to defined, underlying groups of cells in the epithelium. We show that the house is composed of at least 20 polypeptides, a number of which are highly glycosylated, with glycosidase treatments resulting in molecular mass shifts exceeding 100 kDa. Nanoelectrospray tandem mass spectrometric microsequencing of house polypeptides was used to design oligonucleotides to screen an adult Oikopleura dioicacDNA library. This resulted in the isolation of cDNAs coding for three different proteins, oikosin 1, oikosin 2, and oikosin 3. The latter two are novel proteins unrelated to any known data base entries. Oikosin 1 has 13 repeats of a Cys domain, previously identified as a subunit of repeating sequences in some vertebrate mucins. We also find one repeat of this Cys domain in human cartilage intermediate layer protein but find no evidence of this domain in any invertebrate species, including those for which entire genomes have been sequenced. The three oikosins show distinct and complementary expression patterns restricted to the oikoplastic epithelium. This easily accessible epithelium, with differential gene expression patterns in readily identifiable groups of cells with distinctive nuclear morphologies, is a highly attractive model system for molecular studies of pattern formation.


Applied and Environmental Microbiology | 2008

Detection and Discovery of Crustacean Parasites in Blue Crabs (Callinectes sapidus) by Using 18S rRNA Gene-Targeted Denaturing High-Performance Liquid Chromatography

Christofer Troedsson; Richard F. Lee; Tina L. Walters; Vivica Stokes; Karrie Brinkley; Verena Naegele; Marc E. Frischer

ABSTRACT Recently, we described a novel denaturing high-performance liquid chromatography (DHPLC) approach useful for initial detection and identification of crustacean parasites. Because this approach utilizes general primers targeted to conserved regions of the 18S rRNA gene, a priori genetic sequence information on eukaryotic parasites is not required. This distinction provides a significant advantage over specifically targeted PCR assays that do not allow for the detection of unknown or unsuspected parasites. However, initial field evaluations of the DHPLC assay suggested that because of PCR-biased amplification of dominant host genes it was not possible to detect relatively rare parasite genes in infected crab tissue. Here, we describe the use of a peptide nucleic acid (PNA) PCR hybridization blocking probe in association with DHPLC (PNA-PCR DHPLC) to overcome inherent PCR bias associated with amplification of rare target genes by use of generic primers. This approach was utilized to detect infection of blue crabs (Callinectes sapidus) by the parasitic dinoflagellate Hematodinium sp. Evaluation of 76 crabs caught in Wassaw Sound, GA, indicated a 97% correspondence between detection of the parasite by use of a specific PCR diagnostic assay and that by use of PNA-PCR DHPLC. During these studies, we discovered one crab with an association with a previously undescribed protist symbiont. Phylogenetic analysis of the amplified symbiont 18S rRNA gene indicated that it is most closely related to the free-living kinetoplastid parasite Procryptobia sorokini. To our knowledge, this is the first report of this parasite group in a decapod crab and of this organism exhibiting a presumably parasitic life history.


Applied and Environmental Microbiology | 2008

Development of a Denaturing High-Performance Liquid Chromatography Method for Detection of Protist Parasites of Metazoans

Christofer Troedsson; Richard F. Lee; Vivica Stokes; Tina L. Walters; Paolo Simonelli; Marc E. Frischer

ABSTRACT Increasingly, diseases of marine organisms are recognized as significant biotic factors affecting ecosystem health. However, the responsible disease agents are often unknown and the discovery and description of novel parasites most often rely on morphological descriptions made by highly trained specialists. Here, we describe a new approach for parasite discovery, utilizing denaturing high-performance liquid chromatography (DHPLC) reverse-phase ion-paring technology. Systematic investigations of major DHPLC variables, including temperature, gradient conditions, and target amplicon characteristics were conducted to develop a mechanistic understanding of DNA fragment separation by DHPLC. As a model system, 18S rRNA genes from the blue crab (Callinectes sapidus) and a parasitic dinoflagellate Hematodinium sp. were used. Binding of 18S rRNA gene PCR amplicons to the DNA separation column in the presence of triethylammonium acetate (TEAA) was inversely correlated with temperature and could be predicted based on the estimated DNA helicity of the PCR amplicon. Amplicons of up to 498 bp were resolved as single chromatographic peaks if they had high (>95%) DNA helicity. Amplicons that differed by as few as 2 bp could be resolved. Separation of 18S rRNA gene PCR amplicons was optimized by simultaneous manipulation of both temperature and solvent gradients. The optimal conditions included targeting regions of high DNA helicity (>95%), temperatures in the range of 57 to 63°C, and a linear acetonitrile gradient from 13.75 to 17.5% acetonitrile in 0.1 M TEAA (55 to 70% buffer B) over a 9-min period. Under these conditions, amplicons from a variety of parasites and their hosts can be separated and detected by DHPLC.


Molecular Ecology | 2016

High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling activities

Anders Lanzén; Katrine Lekang; Inge Jonassen; Eric M. Thompson; Christofer Troedsson

As global exploitation of available resources increases, operations extend towards sensitive and previously protected ecosystems. It is important to monitor such areas in order to detect, understand and remediate environmental responses to stressors. The natural heterogeneity and complexity of communities means that accurate monitoring requires high resolution, both temporally and spatially, as well as more complete assessments of taxa. Increased resolution and taxonomic coverage is economically challenging using current microscopy‐based monitoring practices. Alternatively, DNA sequencing‐based methods have been suggested for cost‐efficient monitoring, offering additional insights into ecosystem function and disturbance. Here, we applied DNA metabarcoding of eukaryotic communities in marine sediments, in areas of offshore drilling on the Norwegian continental shelf. Forty‐five samples, collected from seven drilling sites in the Troll/Oseberg region, were assessed, using the small subunit ribosomal RNA gene as a taxonomic marker. In agreement with results based on classical morphology‐based monitoring, we were able to identify changes in sediment communities surrounding oil platforms. In addition to overall changes in community structure, we identified several potential indicator taxa, responding to pollutants associated with drilling fluids. These included the metazoan orders Macrodasyida, Macrostomida and Ceriantharia, as well as several ciliates and other protist taxa, typically not targeted by environmental monitoring programmes. Analysis of a co‐occurrence network to study the distribution of taxa across samples provided a framework for better understanding the impact of anthropogenic activities on the benthic food web, generating novel, testable hypotheses of trophic interactions structuring benthic communities.


Molecular Ecology | 2014

A molecular gut content study of Themisto abyssorum (Amphipoda) from Arctic hydrothermal vent and cold seep systems

Bernt Rydland Olsen; Christofer Troedsson; Kenan Hadziavdic; Rolf B. Pedersen; Hans Tore Rapp

The use of DNA as a marker for prey inside the gut of predators has been instrumental in further understanding of known and unknown interactions. Molecular approaches are in particular useful in unavailable environments like the deep sea. Trophic interactions in the deep sea are difficult to observe in situ, correct deep‐sea experimental laboratory conditions are difficult to obtain, animals rarely survive the sampling, or the study organisms feed during the sampling due to long hauls. Preliminary studies of vent and seep systems in the Nordic Seas have identified the temperate‐cold‐water pelagic amphipod Themisto abyssorum as a potentially important predator in these chemosynthetic habitats. However, the prey of this deep‐sea predator is poorly known, and we applied denaturing high performance liquid chromatography (DHPLC) to investigate the predator–prey interactions of T. abyssorum in deep‐water vent and seep systems. Two deep‐water hydrothermally active localities (The Jan Mayen and Lokis Castle vent fields) and one cold seep locality (The Håkon Mosby mud volcano) in the Nordic Seas were sampled, genomic DNA of the stomachs of T. abyssorum was extracted, and 18S rDNA gene was amplified and used to map the stomach content. We found a wide range of organisms including micro‐eukaryotes, metazoans and detritus. Themisto abyssorum specimens from Lokis Castle had the highest diversity of prey. The wide range of prey items found suggests that T. abyssorum might be involved in more than one trophic level and should be regarded as an omnivore and not a strict carnivore as have previously been suggested.


The Biological Bulletin | 2007

Endostyle Cell Recruitment as a Frame of Reference for Development and Growth in the Urochordate Oikopleura dioica

Christofer Troedsson; Philippe Ganot; Jean-Marie Bouquet; Dag L. Aksnes; Eric M. Thompson

In models of growth and life history, and in molecular and cell biology, there is a need for more accurate frames of reference to characterize developmental progression. In Caenorhabditis elegans, complete fate maps of cell lineage provide such a standard of reference. To be more widely applicable, reference frames should be easier to measure while still providing strong predictive capacity. Towards this aim, we have analyzed growth of the endostyle in the appendicularian Oikopleura dioica at the cellular level, and measured its response to temperature and food availability. Specifically, we test the hypothesis that age of a specific developmental stage in O. dioica can be predicted from the number of endostyle cells and temperature. We show that the endostyle grows by recruiting cells from the posterior tip into the lateral arms of the organ in an anterior-posterior orientation and that the rate of increase in lateral arm endostyle cells is temperature-dependent but unresponsive to nutritional intake. Endostyle cells therefore serve as an accurate and easily measured marker to describe developmental progression. Conceptually, such a method of characterizing developmental progression should help bridge life-history events and molecular mechanisms throughout organismal aging, facilitating cross-disciplinary understanding by providing a common experimental framework.


Molecular Ecology | 2016

Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities.

Jessica L. Ray; Julia Althammer; Katrine Sandnes Skaar; Paolo Simonelli; Aud Larsen; Diane K. Stoecker; Andrey F. Sazhin; Umer Zeeshan Ijaz; Christopher Quince; Jens C. Nejstgaard; Marc E. Frischer; Georg Pohnert; Christofer Troedsson

In order to characterize copepod feeding in relation to microbial plankton community dynamics, we combined metabarcoding and metabolome analyses during a 22‐day seawater mesocosm experiment. Nutrient amendment of mesocosms promoted the development of haptophyte (Phaeocystis pouchetii)‐ and diatom (Skeletonema marinoi)‐dominated plankton communities in mesocosms, in which Calanus sp. copepods were incubated for 24 h in flow‐through chambers to allow access to prey particles (<500 μm). Copepods and mesocosm water sampled six times spanning the experiment were analysed using metabarcoding, while intracellular metabolite profiles of mesocosm plankton communities were generated for all experimental days. Taxon‐specific metabarcoding ratios (ratio of consumed prey to available prey in the surrounding seawater) revealed diverse and dynamic copepod feeding selection, with positive selection on large diatoms, heterotrophic nanoflagellates and fungi, while smaller phytoplankton, including P. pouchetii, were passively consumed or even negatively selected according to our indicator. Our analysis of the relationship between Calanus grazing ratios and intracellular metabolite profiles indicates the importance of carbohydrates and lipids in plankton succession and copepod–prey interactions. This molecular characterization of Calanus sp. grazing therefore provides new evidence for selective feeding in mixed plankton assemblages and corroborates previous findings that copepod grazing may be coupled to the developmental and metabolic stage of the entire prey community rather than to individual prey abundances.

Collaboration


Dive into the Christofer Troedsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc E. Frischer

Skidaway Institute of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens C. Nejstgaard

Skidaway Institute of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey F. Sazhin

Shirshov Institute of Oceanology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge