Christoffer Löf
Åbo Akademi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoffer Löf.
Endocrinology | 2009
Nina Bergelin; T. Blom; Jari E. Heikkilä; Christoffer Löf; C. Alam; Sonja Balthasar; J. P. Slotte; Ari Hinkkanen; Kid Törnquist
Sphingosine 1-phosphate (S1P) induces migration of the human thyroid follicular carcinoma cell line ML-1 by activation of S1P(1) and S1P(3) receptors, G(i) proteins, and the phosphatidylinositol 3-kinase-Akt pathway. Because sphingosine kinase isoform 1 (SK) recently has been implicated as an oncogene in various cancer cell systems, we investigated the functions of SK in the migration, proliferation and adhesion of the ML-1 cell line. SK overexpressing ML-1 cells show an enhanced secretion of S1P, which can be attenuated, by inhibiting SK activity and a multidrug-resistant transport protein (ATP-binding cassette transporter). Furthermore, overexpression of SK enhances serum-induced migration of ML-1 cells, which can be attenuated by blocking ATP-binding cassette transporter and SK, suggesting that the migration is mediated by autocrine signaling through secretion of S1P. Inhibition of protein kinase C alpha, with both small interfering RNA (siRNA) and small molecular inhibitors attenuates migration in SK overexpressing cells. In addition, SK-overexpressing cells show an impaired adhesion, slower cell growth, and an up-regulation of ERK1/2 phosphorylation, as compared with cells expressing a dominant-negative SK. Taken together, we present evidence suggesting that SK enhances migration of ML-1 cells by an autocrine mechanism and that the S1P-evoked migration is dependent on protein kinase C alpha, ERK1/2, and SK.
BMC Cell Biology | 2010
Tomas Blom; Nina Bergelin; Annika Meinander; Christoffer Löf; J. Peter Slotte; John E. Eriksson; Kid Törnquist
BackgroundSphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a multitude of cellular functions, including cell proliferation, survival, migration and angiogenesis. S1P mediates its effects either by signaling through G protein-coupled receptors (GPCRs) or through an intracellular mode of action. In this study, we have investigated the mechanism behind S1P-induced survival signalling.ResultsWe found that S1P protected cells from FasL-induced cell death in an NF-κB dependent manner. NF-κB was activated by extracellular S1P via S1P2 receptors and Gi protein signaling. Our study also demonstrates that extracellular S1P stimulates cells to rapidly produce and secrete additional S1P, which can further amplify the NF-κB activation.ConclusionsWe propose a self-amplifying loop of autocrine S1P with capacity to enhance cell survival. The mechanism provides increased understanding of the multifaceted roles of S1P in regulating cell fate during normal development and carcinogenesis.
Endocrine-related Cancer | 2008
Sonja Balthasar; Nina Bergelin; Christoffer Löf; Minna Vainio; Sture Andersson; Kid Törnquist
Sphingosine-1-phosphate (S1P) induces migration of human ML-1 thyroid follicular cancer cells and inhibits migration of human FRO anaplastic thyroid cancer cells. As tumour cells often secrete vascular endothelial growth factor (VEGF), we investigated a possible interaction between S1P and VEGF signalling in the regulation of thyroid tumour cell migration. We found that both ML-1 and FRO cells secreted VEGF-A ( approximately 3.6 and <0.1 ng/10(6) cells/day respectively) and VEGF-C ( approximately 3.0 and 0.14 ng/10(6) cells/day respectively). S1P stimulated VEGF-A secretion in both cell lines, and blocking S1P receptors 1, 2 and 3 attenuated the S1P-evoked secretion of VEGF-A. Neither TSH nor insulin affected the amount of secreted VEGF-A or -C in ML-1 cells, while simultaneous stimulation with insulin and S1P increased VEGF-C secretion in FRO cells. Both cell lines expressed VEGF receptor 2 (VEGFR-2) mRNA and proteins. Serum-evoked migration of both ML-1 and FRO cells was attenuated when VEGFR-2 was inhibited. Moreover, inhibiting VEGFR-2 in ML-1 cells resulted in a rapid downregulation of S1P1 mRNA expression and S1P1 protein levels, suppression of S1P-induced migration and a decrease in S1P-induced Akt phosphorylation. A VEGF-neutralizing antibody also reduced S1P-induced migration. In ML-1 cells, S1P phosphorylated VEGFR-2. In addition, VEGFR-2 inhibition resulted in the upregulation of S1P3 mRNA within 24 h, but a significant increase in S1P3 protein levels was not observed. VEGFR-2 inhibition, but not a VEGF-neutralizing antibody, reduced ML-1 cell proliferation independently of S1P stimulation. The results indicate a complex interaction between S1P and VEGFR-2 in ML-1 cells, particularly in regulating migratory responses.
Journal of Cellular Physiology | 2013
Tero Viitanen; Pramod Sukumaran; Christoffer Löf; Kid Törnquist
The initial step in a synthesis of thyroid hormones is the uptake of iodide from the circulation. Iodide (I−) is transported into thyroid cells via a Na+/I− symporter (NIS), which is electrogenic and thus sensitive to alterations in membrane potential (Vm). I− is then released to the lumen of thyroid follicles where the hormones are synthesised and stored. The mechanisms of I− release to follicle lumen are poorly characterised. Our whole‐cell voltage clamp recordings revealed the presence of a Ca2+ activated Cl− current (CaCC) in Fisher rat thyroid cell line 5 (FRTL‐5). Transcripts of anoctamin 1 (ANO1) and anoctamin 10 (ANO10), putative molecular constituents of CaCC, were detected. The anion channels underlying CaCC are highly permeable to I−. Both niflumic acid (NFA) and 2‐aminoethyl diphenylborinate (2‐APB), antagonists of CaCC and transient receptor potential channels, respectively, inhibited CaCC. Canonical transient receptor potential channel 2 (TRPC2) is the only TRPC member present in FRTL‐5 cells. The activation rate of CaCC was markedly slower in shTRPC2 knock‐down cells, indicating that Ca2+ entry via TRPC2 contributes to CaCC activation. The uptake of iodide was enhanced and the resting Vm was more depolarised in TRPC2 knock‐down cells. We suggest that the interplay between TRPC2 and ANO1 may have dual effects on iodide transport, modulating I− release via ANO channels and I− uptake via the Vm sensitive NIS. J. Cell. Physiol. 228: 814–823, 2013.
Molecular Endocrinology | 2012
Christoffer Löf; Pramod Sukumaran; Tero Viitanen; Minna Vainio; Kati Kemppainen; Ilari Pulli; Johnny Näsman; Jyrki P. Kukkonen; Kid Törnquist
Transient receptor potential (TRP) cation channels are widely expressed and function in many physiologically important processes. Perturbations in the expression or mutations of the channels have implications for diseases. Many thyroid disorders, as excessive growth or disturbed thyroid hormone production, can be a result of dysregulated TSH signaling. In the present study, we found that of TRP canonicals (TRPCs), only TRPC2 was expressed in Fischer rat thyroid low-serum 5% cells (FRTL-5 cells). To investigate the physiological importance of the channel, we developed stable TRPC2 knockdown cells using short hairpin RNA (shTRPC2 cells). In these cells, the ATP-evoked entry of calcium was significantly decreased. This led to increased cAMP production, because inhibitory signals from calcium to adenylate cyclase 5/6 were decreased. Enhanced cAMP signaling projected to Ras-related protein 1-MAPK kinase 1 (MAPK/ERK kinase 1) pathway leading to phosphorylation of ERK1/2. The activated ERK1/2 pathway increased the expression of the TSH receptor. In contrast, secretion of thyroglobulin was decreased in shTRPC2 cells, due to improper folding and glycosylation of the protein. We show here a novel role for TRPC2 in regulating thyroid cell function.
Journal of Biological Chemistry | 2015
Muhammad Yasir Asghar; Melissa Magnusson; Kati Kemppainen; Pramod Sukumaran; Christoffer Löf; Ilari Pulli; Veronica Kalhori; Kid Törnquist
Background: The identity of calcium channels in the thyroid is undefined. Results: TRPC1 functions as a major regulator of S1P and VEGF receptors via a calcium-dependent mechanism. This is important for cell migration. Conclusion: We have defined a novel physiological role for the TRPC1 channel. Significance: This study explains how TRPC1 regulates receptor expression and migration in thyroid cancer cells. The identity of calcium channels in the thyroid is unclear. In human follicular thyroid ML-1 cancer cells, sphingolipid sphingosine 1-phosphate (S1P), through S1P receptors 1 and 3 (S1P1/S1P3), and VEGF receptor 2 (VEGFR2) stimulates migration. We show that human thyroid cells express several forms of transient receptor potential canonical (TRPC) channels, including TRPC1. In TRPC1 knockdown (TRPC1-KD) ML-1 cells, the basal and S1P-evoked invasion and migration was attenuated. Furthermore, the expression of S1P3 and VEGFR2 was significantly down-regulated. Transfecting wild-type ML-1 cells with a nonconducting TRPC1 mutant decreased S1P3 and VEGFR2 expression. In TRPC1-KD cells, receptor-operated calcium entry was decreased. To investigate whether the decreased receptor expression was due to attenuated calcium entry, cells were incubated with the calcium chelator BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). In these cells, and in cells where calmodulin and calmodulin-dependent kinase were blocked pharmacologically, S1P3 and VEGFR2 expression was decreased. In TRPC1-KD cells, both hypoxia-inducible factor 1α expression and the secretion and activity of MMP2 and MMP9 were attenuated, and proliferation was decreased in TRPC1-KD cells. This was due to a prolonged G1 phase of the cell cycle, a significant increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27, and a decrease in the expression of cyclin D2, cyclin D3, and CDK6. Transfecting TRPC1 to TRPC1-KD cells rescued receptor expression, migration, and proliferation. Thus, the expression of S1P3 and VEGFR2 is mediated by a calcium-dependent mechanism. TRPC1 has a crucial role in this process. This regulation is important for the invasion, migration, and proliferation of thyroid cancer cells.
Molecular and Cellular Endocrinology | 2013
Pramod Sukumaran; Christoffer Löf; Ilari Pulli; Kati Kemppainen; Tero Viitanen; Kid Törnquist
Mammalian transient receptor potential (TRP) channels are involved in many physiologically important processes. Here, we have studied the significance of the TRPC2 channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion, using stable TRPC2 (shTRPC2) knock-down cells. In the shTRPC2 cells, proliferation was decreased due to a prolonged G1/S cell cycle phase. The tumor suppressor p53 and the cyclin-dependant kinase inhibitors p27 and p21 were upregulated. Cell invasion, adhesion and migration were also attenuated in shTRPC2 cells, probably due to decreased activity of both Rac and calpain, and a decreased secretion and activity of matrix metalloproteinase 2. The attenuated proliferation, migration, invasion and ATP-evoked calcium entry was mimicked by overexpressing a non-conducting, truncated TRPC2 (TRPC2-DN) in wild type cells, and was reversed by overexpression of TRPC2-GFP in shTRPC2 cells. In conclusion, TRPC2 is an important regulator of rat thyroid cell function.
Endocrinology | 2009
Dan Gratschev; Christoffer Löf; Jari E. Heikkilä; Anders Björkbom; Pramod Sukumaran; Ari Hinkkanen; J. Peter Slotte; Kid Törnquist
Calcium entry is one of the main regulators of intracellular signaling. Here, we have described the importance of sphingosine, sphingosine kinase 1 (SK1), and sphingosine 1-phosphate (S1P) in regulating calcium entry in thyroid FRTL-5 cells. In cells incubated with the phosphatase inhibitor calyculin A, which evokes calcium entry without mobilizing sequestered intracellular calcium, sphingosine inhibited calcium entry in a concentration-dependent manner. Furthermore, inhibiting SK1 or the ATP-binding cassette ABCC1 multidrug transporter attenuated calcium entry. The addition of exogenous S1P restored calcium entry. Neither sphingosine nor inhibition of SK1 attenuated thapsigargin-evoked calcium entry. Blocking S1P receptor 2 or phospholipase C attenuated calcium entry, whereas blocking S1P receptor 3 did not. Overexpression of wild-type SK1, but not SK2, enhanced calyculin-evoked calcium entry compared with mock-transfected cells, whereas calcium entry was decreased in cells transfected with the dominant-negative G82D SK1 mutant. Exogenous S1P restored calcium entry in G82D cells. Our results suggest that the calcium entry pathway is blocked by sphingosine and that activation of SK1 and the production of S1P, through an autocrine mechanism, facilitate calcium entry through activation of S1P receptor 2. This is a novel mechanism by which the sphingosine-S1P rheostat regulates cellular calcium homeostasis.
Advances in Experimental Medicine and Biology | 2011
Christoffer Löf; Tero Viitanen; Pramod Sukumaran; Kid Törnquist
Relatively little is known in regard to the physiological significance of TRPC2 and its regulation or interaction with other calcium regulating signalling molecules. In rodents, however, the importance of TRPC2 is indisputable. In mice, transcripts for TRPC2 have been found in testis, sperm, in neurons in the vomeronasal organ, and both in the dorsal root ganglion and in the brain. In rats, TRPC2 is thought to be expressed exclusively in the vomeronasal organ. In mice, TRPC2 is of importance in regulating both sexual and social behaviour. In sperm, TRPC2 is of importance in the acrosome reaction. This review will summarize the known physiological effects of TRPC2 channels, and the regulation of the function of the channel. In addition, some new preliminary data on the role of TRPC2 in rat thyroid cells will be presented.
Journal of Cellular Physiology | 2008
Christoffer Löf; Tomas Blom; Kid Törnquist
The mammalian canonical transient receptor channels (TRPCs) are considered to be candidates for store‐operated calcium channels (SOCCs). Many studies have addressed how TRPC3 channels are affected by depletion of intracellular calcium stores. Conflicting results have been shown for TRPC3 regarding its function, and this has been linked to its level of expression in various systems. In the present study, we have investigated how overexpression of TRPC3 interferes with the regulation of intracellular calcium stores. We demonstrate that overexpression of TRPC3 reduces the mobilization of calcium in response to stimulation of the cells with thapsigargin (TG) or the G‐protein coupled receptor agonist sphingosine‐1‐phosphate (S1P). Our results indicate that this is the result of the expression of TRPC3 channels in the endoplasmic reticulum (ER), thus depleting ER calcium stores. OAG evoked calcium entry in cells overexpressing TRPC3, indicating that functional TRPC3 channels were also expressed in the plasma membrane. Taken together, our results show that overexpression of the putative SOCC, TRPC3, actually reduces the calcium content of intracellular stores, but does not enhance agonist‐evoked or store‐dependent calcium entry. Our results may, in part, explain the conflicting results obtained in previous studies on the actions of TRPC3 channels. J. Cell. Physiol. 216: 245–252, 2008.