Christoph A. Gehring
King Abdullah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph A. Gehring.
Nature | 2017
David Erwin Jarvis; Yung Shwen Ho; Damien J. Lightfoot; Sandra M. Schmöckel; Bo Li; T.J.A. Borm; Hajime Ohyanagi; Katsuhiko Mineta; Craig T. Michell; Noha Saber; Najeh M. Kharbatia; Ryan R. Rupper; Aaron R. Sharp; Nadine Dally; Berin A. Boughton; Yong Woo; Ge Gao; Elio Schijlen; Xiujie Guo; Afaque Ahmad Imtiyaz Momin; Sónia Negrão; Salim Al-Babili; Christoph A. Gehring; Ute Roessner; Christian Jung; Kevin G. Murphy; Stefan T. Arold; Takashi Gojobori; C. Gerard van der Linden; Eibertus N. van Loo
Chenopodium quinoa (quinoa) is a highly nutritious grain identified as an important crop to improve world food security. Unfortunately, few resources are available to facilitate its genetic improvement. Here we report the assembly of a high-quality, chromosome-scale reference genome sequence for quinoa, which was produced using single-molecule real-time sequencing in combination with optical, chromosome-contact and genetic maps. We also report the sequencing of two diploids from the ancestral gene pools of quinoa, which enables the identification of sub-genomes in quinoa, and reduced-coverage genome sequences for 22 other samples of the allotetraploid goosefoot complex. The genome sequence facilitated the identification of the transcription factor likely to control the production of anti-nutritional triterpenoid saponins found in quinoa seeds, including a mutation that appears to cause alternative splicing and a premature stop codon in sweet quinoa strains. These genomic resources are an important first step towards the genetic improvement of quinoa.
Molecular Plant | 2015
Patricia Domingos; Ana Margarida Prado; Aloysius Wong; Christoph A. Gehring; José A. Feijó
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
BMC Systems Biology | 2011
Stuart Meier; Oren Tzfadia; Ratnakar Vallabhaneni; Christoph A. Gehring; Eleanore T. Wurtzel
BackgroundThe carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.ResultsA global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of chlorophyll biosynthesis genes in a manner that is consistent with the increased synthesis of carotenoid precursors for ABA biosynthesis. In all tissues examined, induction of β-carotene hydroxylase transcript levels are linked to an increased demand for ABA.ConclusionsThis analysis provides compelling evidence to suggest that coordinated transcriptional regulation of isoprenoid-related biosynthesis pathway genes plays a major role in coordinating the synthesis of functionally related chloroplast localized isoprenoid-derived compounds.
Cell Communication and Signaling | 2013
Claudius Marondedze; Ilona Turek; Brian Jonathan Parrott; Ludivine Thomas; Boris R. Jankovic; Kathryn S. Lilley; Christoph A. Gehring
BackgroundIncreasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins.FindingsHere we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus.ConclusionsGiven both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated.
Molecular Plant-microbe Interactions | 1997
Christoph A. Gehring; Helen R. Irving; Akram A. Kabbara; Roger W. Parish; Nawal M. Boukli; William J. Broughton
Rhizobia excrete variously substituted lipo-oligosaccha-ride Nod factors into the legume rhizosphere. Homologous legumes respond to these signals through deformation of the root hairs and the development of nodulation foci in the root cortex. Cellular events in root hairs from the susceptible zone of nearly mature root hairs were studied in root segments loaded with the calcium indicators Fura-2 or Fluo-3. Application of 10-9 M Nod factors of the broad-host-range Rhizobium sp. NGR234 to the homologous legume Vigna unguiculata resulted, within seconds, in plateau-like increases in intracellular free calcium ([Ca2+]i) in the root hairs and root epidermal cells. Nod factors of R. meliloti at 10-9 M caused equally rapid increases in [Ca2+]i in the root hairs and epidermal cells of the nonhost V. unguiculata, and also induced root-hair deformation. The chitin tetramer, N-N′-N″-N′″-tetracetylchitotetraose, which represents the backbone of Nod factors, induced neither root-hair deformation nor changes in [Ca2+]i...
Plant Physiology and Biochemistry | 2001
Made Pharmawati; Maria M. Maryani; Theo Nikolakopoulos; Christoph A. Gehring; Helen R. Irving
Abstract In this paper we demonstrate that compounds that promote stomatal opening such as kinetin, atrial natriuretic peptide (ANP) and plant natriuretic peptide immunoanalogues (irPNP) significantly elevate cGMP in guard cell protoplasts. Stomata opened by irPNP are induced to close in the presence of the guanylate cyclase inhibitor, LY 83583. The effect of cGMP on stomatal opening appears to be linked with Ca 2+ levels. ANP, irPNP and 8-Br-cGMP all induce stomatal opening and this is inhibited by compounds that lower intracellular Ca 2+ levels such as ethylene glycol bis(β-aminoethyl ether) N,N,N’,N’ -tetraacetic acid (EGTA), ruthenium red and procaine. This connection between Ca 2+ and cGMP is further supported by the fact that irPNP induced increases in cGMP levels do not occur in the presence of EGTA. Since the plasma membrane H + -ATPase is a key enzyme driving stomatal opening, we determined if a causal relationship exists between cGMP, ANP or irPNP and proton transport across the guard cell. Our results showed that the activity of the H + -ATPase is reduced by 8-Br-cGMP and increased by ANP and irPNP. However, ATP-dependent transmembrane H + gradients are only increased with ANP and not irPNP. This irPNP response can be explained by a direct or indirect irPNP-dependent activation of the enzyme that does not translate into an increase in proton gradient, possibly because irPNP affects H + coupled symporters.
Frontiers in Plant Science | 2012
Alice K. Zelman; Adam Dawe; Christoph A. Gehring; Gerald A. Berkowitz
Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments.
Plant Science | 1998
M. Pharmawati; Christoph A. Gehring; Helen R. Irving
Natriuretic peptides (NPs) are a family of peptide hormones strongly implicated in the regulation of salt and water homeostasis in vertebrates. Recently, evidence has been presented for the presence of a NP hormone system in plants. Atrial natriuretic peptide (ANP) bound specifically to isolated leaf membranes and promoted stomatal opening in a concentration and conformation dependent manner. We have immunoaffinity purified biologically active plant NP analogues from Hedera helix (ivy). Here we report that one of these immunoreactive plant NP fractions rapidly and specifically increases cyclic guanosine-3%,5%-monophosphate (cGMP) levels in stele tissue isolated from maize roots within 30 s. ANP and kinetin do not affect cGMP levels in maize root stele tissue. Moreover LY 83583 an inhibitor of guanylate cyclase does not affect any of these responses. Since LY 83583 does not always inhibit particulate guanylate cyclase, these results support the existence of a membrane bound PNP receptor containing intrinsic guanylate cyclase activity analogous to animal NP receptors. We postulate the presence of biologically active PNP system in the stele and speculate that it modulates solute movements in and out of this tissue.
Planta | 1998
Christoph A. Gehring; Robyn M. McConchie; Ma Venis; Roger W. Parish
Abstract. Previous work has shown that stomatal opening induced by indole-3-acetic acid (IAA) in epidermal strips of the orchid Paphiopedilum tonsum L. is preceded by a reduction in cytoplasmic pH (pHi) of the guard cells. We now report that Fab fragments of an auxin-agonist antibody (D16), directed against a putative auxin-binding domain of the auxin-binding protein ABP1, induce stomatal opening and decrease guard-cell pHi, as monitored with the acetomethoxy ester of the ratiometric pH indicator Snarf-1. Similar activity was shown by a monoclonal antibody against the same domain. The C-terminal dodecapeptide, Pz152–163 of maize ABP1 (ABPzm1) induced guard-cell alkalinization and closed stomata, as did Fab fragments of a monoclonal antibody (MAC 256) recognising the C-terminal region of ABPzm1. By implicating, for the first time, an auxin-binding protein in mediation of an auxin-dependent physiological response, these findings strongly support an auxin-receptor role for ABP1.
BMC Plant Biology | 2010
Betiana S. Garavaglia; Ludivine Thomas; Tamara Zimaro; Natalia Gottig; Lucas D. Daurelio; Bongani K. Ndimba; Elena G. Orellano; Jorgelina Ottado; Christoph A. Gehring
BackgroundPlant natriuretic peptides (PNPs) belong to a novel class of peptidic signaling molecules that share some structural similarity to the N-terminal domain of expansins and affect physiological processes such as water and ion homeostasis at nano-molar concentrations. The citrus pathogen Xanthomonas axonopodis pv. citri possesses a PNP-like peptide (XacPNP) uniquely present in this bacteria. Previously we observed that the expression of XacPNP is induced upon infection and that lesions produced in leaves infected with a XacPNP deletion mutant were more necrotic and lead to earlier bacterial cell death, suggesting that the plant-like bacterial PNP enables the plant pathogen to modify host responses in order to create conditions favorable to its own survival.ResultsHere we measured chlorophyll fluorescence parameters and water potential of citrus leaves infiltrated with recombinant purified XacPNP and demonstrate that the peptide improves the physiological conditions of the tissue. Importantly, the proteomic analysis revealed that these responses are mirrored by rapid changes in the host proteome that include the up-regulation of Rubisco activase, ATP synthase CF1 α subunit, maturase K, and α- and β-tubulin.ConclusionsWe demonstrate that XacPNP induces changes in host photosynthesis at the level of protein expression and in photosynthetic efficiency in particular. Our findings suggest that the biotrophic pathogen can use the plant-like hormone to modulate the host cellular environment and in particular host metabolism and that such modulations weaken host defence.