Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Baranec is active.

Publication


Featured researches published by Christoph Baranec.


The Astrophysical Journal | 2013

Reconnaissance of the HR 8799 Exosolar System. I. Near-infrared Spectroscopy

Ben R. Oppenheimer; Christoph Baranec; C. A. Beichman; Douglas Brenner; Rick Burruss; Eric Cady; Justin R. Crepp; Richard G. Dekany; Rob Fergus; David Hale; Lynne A. Hillenbrand; Sasha Hinkley; David W. Hogg; David A. King; E. R. Ligon; Thomas G. Lockhart; Ricky Nilsson; Ian R. Parry; Laurent Pueyo; Emily L. Rice; Jennifer E. Roberts; Lewis C. Roberts; M. Shao; Anand Sivaramakrishnan; Rémi Soummer; Tuan Truong; Gautam Vasisht; Aaron Veicht; Fred E. Vescelus; James K. Wallace

We obtained spectra in the wavelength range λ = 995-1769 nm of all four known planets orbiting the star HR 8799. Using the suite of instrumentation known as Project 1640 on the Palomar 5 m Hale Telescope, we acquired data at two epochs. This allowed for multiple imaging detections of the companions and multiple extractions of low-resolution (R ~ 35) spectra. Data reduction employed two different methods of speckle suppression and spectrum extraction, both yielding results that agree. The spectra do not directly correspond to those of any known objects, although similarities with L and T dwarfs are present, as well as some characteristics similar to planets such as Saturn. We tentatively identify the presence of CH_4 along with NH_3 and/or C_2H_2, and possibly CO_2 or HCN in varying amounts in each component of the system. Other studies suggested red colors for these faint companions, and our data confirm those observations. Cloudy models, based on previous photometric observations, may provide the best explanation for the new data presented here. Notable in our data is that these presumably co-eval objects of similar luminosity have significantly different spectra; the diversity of planets may be greater than previously thought. The techniques and methods employed in this paper represent a new capability to observe and rapidly characterize exoplanetary systems in a routine manner over a broad range of planet masses and separations. These are the first simultaneous spectroscopic observations of multiple planets in a planetary system other than our own.


The Astrophysical Journal | 2015

An Ancient Extrasolar System with Five Sub-Earth-size Planets

T. L. Campante; Jonathan J. Swift; D. Huber; V. Zh-H. Adibekyan; William D. Cochran; Christopher J. Burke; Howard Isaacson; Elisa V. Quintana; G. R. Davies; V. Silva Aguirre; Darin Ragozzine; Reed Riddle; Christoph Baranec; Sarbani Basu; W. J. Chaplin; J. Christensen-Dalsgaard; T. S. Metcalfe; Timothy R. Bedding; R. Handberg; D. Stello; John M. Brewer; S. Hekker; C. Karoff; Rea Kolbl; Nicholas M. Law; M. Lundkvist; A. Miglio; Jason F. Rowe; N. C. Santos; C. Van Laerhoven

The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universes history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universes 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.


The Astrophysical Journal | 2015

Characterizing K2 Planet Discoveries: A Super-Earth Transiting the Bright K Dwarf HIP 116454

Andrew Vanderburg; Benjamin T. Montet; John Asher Johnson; Lars A. Buchhave; Li Zeng; F. Pepe; Andrew Collier Cameron; David W. Latham; Emilio Molinari; S. Udry; Christophe Lovis; Jaymie M. Matthews; Chris Cameron; Nicholas M. Law; Brendan P. Bowler; Ruth Angus; Christoph Baranec; Allyson Bieryla; W. Boschin; David Charbonneau; Rosario Cosentino; X. Dumusque; P. Figueira; David B. Guenther; A. Harutyunyan; C. Hellier; Rainer Kuschnig; Mercedes Lopez-Morales; Michel Mayor; Giusi Micela

We report the first planet discovery from the two-wheeled Kepler (K2) mission: HIP 116454 b. The host star HIP 116454 is a bright (V = 10.1, K = 8.0) K1 dwarf with high proper motion and a parallax-based distance of 55.2 ± 5.4 pc. Based on high-resolution optical spectroscopy, we find that the host star is metal-poor with (Fe/H) =− 0.16 ± 0.08 and has a radius R� = 0.716 ± 0.024 Rand mass M� = 0.775 ± 0.027 M� . The star was observed by the Kepler spacecraft during its Two-Wheeled Concept Engineering Test in 2014 February. During the 9 days of observations, K2 observed a single transit event. Using a new K2 photometric analysis technique, we are able to correct small telescope drifts and recover the observed transit at high confidence, corresponding to a planetary radius of Rp = 2.53 ± 0.18 R⊕. Radial velocity observations with the HARPS-N spectrograph reveal a 11.82 ± 1.33 M⊕ planet in a 9.1 day orbit, consistent with the transit depth, duration, and ephemeris. Follow-up photometric measurements from the MOST satellite confirm the transit observed in the K2 photometry and provide a refined ephemeris, making HIP 116454 b amenable for future follow-up observations of this latest addition to the growing population of transiting super-Earths around nearby, bright stars.


The Astrophysical Journal | 2015

RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. II. ASTROMETRY AND ORBITAL MOTION

Laurent Pueyo; Rémi Soummer; J. Hoffmann; Rebecca Oppenheimer; James R. Graham; Neil Zimmerman; Chengxing Zhai; James K. Wallace; Fred E. Vescelus; Aaron Veicht; Gautam Vasisht; Tuan Truong; Anand Sivaramakrishnan; M. Shao; Lewis C. Roberts; Jennifer E. Roberts; Emily L. Rice; Ian R. Parry; Ricky Nilsson; Thomas G. Lockhart; E. R. Ligon; David A. King; Sasha Hinkley; Lynne A. Hillenbrand; David Hale; Richard G. Dekany; Justin R. Crepp; Eric Cady; Rick Burruss; Douglas Brenner

We present an analysis of the orbital motion of the four substellar objects orbiting HR 8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph with an integral field spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an extreme adaptive optics system (PALM-3000), a coronagraph, and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectrophotometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR 8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. Although the astrometric history is currently too scarce to formally rule out coplanarity, HR 8799d appears to be misaligned with respect to the most likely planes of HR 8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR 8799de have dynamical masses below 13 M_(Jup), using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system.


The Astrophysical Journal | 2014

High-efficiency autonomous laser adaptive optics

Christoph Baranec; Reed Riddle; Nicholas M. Law; A. N. Ramaprakash; Shriharsh P. Tendulkar; Kristina Hogstrom; Khanh Bui; Mahesh P. Burse; Pravin Chordia; H. K. Das; Richard G. Dekany; S. R. Kulkarni; Sujit Punnadi

As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earths turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible from the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.


The Astrophysical Journal | 2012

Three New Eclipsing White-dwarf-M-dwarf Binaries Discovered in a Search for Transiting Planets around M-dwarfs

Nicholas M. Law; Adam L. Kraus; R. A. Street; Benjamin J. Fulton; Lynne A. Hillenbrand; Avi Shporer; Tim Lister; Christoph Baranec; Joshua S. Bloom; Khanh Bui; Mahesh P. Burse; S. Bradley Cenko; H. K. Das; Jack Davis; Richard G. Dekany; Alexei V. Filippenko; Mansi M. Kasliwal; S. R. Kulkarni; Peter E. Nugent; Eran O. Ofek; Dovi Poznanski; Robert Michael Quimby; A. N. Ramaprakash; Reed Riddle; Jeffrey M. Silverman; Suresh Sivanandam; Shriharsh P. Tendulkar

We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 × faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R_☉ (0.01 AU). The M-dwarfs have masses of approximately 0.35 M_☉, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M_☉. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R_☉ (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%^(+0.10%)_(-0.05%) (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.


The Astrophysical Journal | 2013

CHARACTERIZING THE COOL KOIs. V. KOI-256: A MUTUALLY ECLIPSING POST-COMMON ENVELOPE BINARY

Philip S. Muirhead; Andrew Vanderburg; Avi Shporer; Juliette C. Becker; Jonathan J. Swift; James P. Lloyd; Jim Fuller; Ming Zhao; Sasha Hinkley; J. Sebastian Pineda; Michael Bottom; Andrew W. Howard; Kaspar von Braun; Tabetha S. Boyajian; Nicholas M. Law; Christoph Baranec; Reed Riddle; A. N. Ramaprakash; Shriharsh P. Tendulkar; Khanh Bui; Mahesh P. Burse; Pravin Chordia; H. K. Das; Richard G. Dekany; Sujit Punnadi; John Asher Johnson

We report that Kepler Object of Interest 256 (KOI-256) is a mutually eclipsing post-common envelope binary (ePCEB), consisting of a cool white dwarf (M_★ = 0.592 ± 0.089 M_☉, R_★ = 0.01345 ± 0.00091 R_☉, T_(eff) = 7100 ± 700 K) and an active M3 dwarf (M_★ = 0.51 ± 0.16 M_☉, R_★ = 0.540 ± 0.014 R_☉, T_(eff) = 3450 ± 50 K) with an orbital period of 1.37865 ± 0.00001 days. KOI-256 is listed as hosting a transiting planet-candidate by Borucki et al. and Batalha et al.; here we report that the planet-candidate transit signal is in fact the occultation of a white dwarf as it passes behind the M dwarf. We combine publicly-available long- and short-cadence Kepler light curves with ground-based measurements to robustly determine the system parameters. The occultation events are readily apparent in the Kepler light curve, as is spin-orbit synchronization of the M dwarf, and we detect the transit of the white dwarf in front of the M dwarf halfway between the occultation events. The size of the white dwarf with respect to the Einstein ring during transit (R_(Ein) = 0.00473 ± 0.00055 R ☉) causes the transit depth to be shallower than expected from pure geometry due to gravitational lensing. KOI-256 is an old, long-period ePCEB and serves as a benchmark object for studying the evolution of binary star systems as well as white dwarfs themselves, thanks largely to the availability of near-continuous, ultra-precise Kepler photometry.


The Astrophysical Journal | 2016

Eleven Multiplanet Systems from K2 Campaigns 1 and 2 and the Masses of Two Hot Super-Earths

Evan Sinukoff; Andrew W. Howard; Erik A. Petigura; Joshua E. Schlieder; Ian J. M. Crossfield; David R. Ciardi; Benjamin J. Fulton; Howard Isaacson; Kimberly M. Aller; Christoph Baranec; Charles A. Beichman; Brad M. S. Hansen; Heather A. Knutson; Nicholas M. Law; Michael C. Liu; Reed Riddle; Courtney D. Dressing

We present a catalog of 11 multi-planet systems from Campaigns 1 and 2 of the K2 mission. We report the sizes and orbits of 26 planets split between seven 2-planet systems and four 3-planet systems. These planets stem from a systematic search of the K2 photometry for all dwarf stars observed by K2 in these fields. We precisely characterized the host stars with adaptive optics imaging and analysis of high-resolution optical spectra from Keck/HIRES and medium-resolution spectra from IRTF/SpeX. We confirm two planet candidates by mass detection and validate the remaining 24 candidates to


Astrophysical Journal Supplement Series | 2016

197 CANDIDATES AND 104 VALIDATED PLANETS IN K2's FIRST FIVE FIELDS

Ian J. M. Crossfield; David R. Ciardi; Erik A. Petigura; Evan Sinukoff; Joshua E. Schlieder; Andrew W. Howard; Charles A. Beichman; Howard Isaacson; Courtney D. Dressing; Jessie L. Christiansen; Benjamin J. Fulton; Sebastien Lepine; Lauren M. Weiss; Lea Hirsch; J. Livingston; Christoph Baranec; Nicholas M. Law; Reed Riddle; Carl Ziegler; Steve B. Howell; Elliott P. Horch; Mark E. Everett; Johanna K. Teske; Arturo O. Martinez; Christian Obermeier; Björn Benneke; N. Scott; Niall R. Deacon; Kimberly M. Aller; Brad M. S. Hansen

>99\%


Nature | 2010

A ground-layer adaptive optics system with multiple laser guide stars

Michael Hart; N. M. Milton; Christoph Baranec; Keith Powell; T. Stalcup; Donald W. McCarthy; Craig Kulesa; Eduardo Bendek

confidence. Thirteen planets were previously validated or confirmed by other studies and 24 were previously identified as planet candidates. The planets are mostly smaller than Neptune (21/26 planets) as in the Kepler mission and all have short periods (

Collaboration


Dive into the Christoph Baranec's collaboration.

Top Co-Authors

Avatar

Reed Riddle

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicholas M. Law

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Richard G. Dekany

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. R. Kulkarni

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carl Ziegler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Shriharsh P. Tendulkar

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. N. Ramaprakash

Inter-University Centre for Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar

Mahesh P. Burse

Inter-University Centre for Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. K. Das

Inter-University Centre for Astronomy and Astrophysics

View shared research outputs
Researchain Logo
Decentralizing Knowledge