Christoph Doering
Kaiserslautern University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Doering.
Beilstein Journal of Nanotechnology | 2016
Ann-Kathrin Kleinschmidt; Lars Barzen; Johannes Strassner; Christoph Doering; Henning Fouckhardt; W. Bock; Michael Wahl; Michael Kopnarski
Reflectance anisotropy spectroscopy (RAS) equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE)) of monocrystalline multilayered III–V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS) reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL) is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.
international conference on information photonics | 2011
Christoph Doering; Dirk Hoffmann; Klaus Huthmacher; Henning Fouckhardt
Experimental results of the combination of AlGaIn-AsSb-based multiple quantum well broad area lasers with a monolithically integrated Fourier-optical 4f spatial-frequency-filter set-up for transverse mode selection are presented. Laser chips with filters for the selection of the fundamental transverse mode and higher order modes (here exemplarily the mode number 6) are processed, their emission is characterized.
Proceedings of SPIE | 2011
Christina Kimmle; Christoph Doering; Anna Steuer; Henning Fouckhardt
A dynamic microfluidic iris is realized. Light attenuation is achieved by absorption of an opaque liquid (e.g. black ink). The adjustment of the iris diameter is achieved by fluid displacement via a transparent elastomer (silicone) half-sphere. This silicone calotte is hydraulically pressed against a polymethylmethacrylate (PMMA) substrate as the bottom window, such that the opaque liquid is squeezed away, this way opening the iris. With this approach a dynamic range of more than 60 dB can be achieved with response times in the ms to s regime. The design allows the realization of a single iris as well as an iris array. So far the master for the molded silicone structure was fabricated by precision mechanics. The aperture diameter was changed continuously from 0 to 8 mm for a single iris and 0 to 4 mm in case of a 3 x 3 iris array. Moreover, an iris array was combined with a PMMA lens array into a compact module, the distance of both arrays equaling the focal length of the lenses. This way e.g. spatial frequency filter arrays can be realized. The possibility to extend the iris array concept to an array with many elements is demonstrated. Such arrays could be applied e.g. in light-field cameras.
Proceedings of SPIE, the International Society for Optical Engineering | 2006
Christoph Doering; Sandra Wolff; Andrey Yu. Rodionov; Vladimir E. Sherstobitov; Dehua Xiao; Henning Fouckhardt
Numerical and experimental results of output dynamics investigations of AR-coated broad area lasers (BALs) above laser threshold are presented. The BALs are subject to feedback from a free-space external Fourier-optical 4f-setup with a spatial reflective filter in the Fourier-plane for transverse mode selection. It is shown theoretically and experimentally that under certain pump current conditions the BALs are operating in a repetitive self-pulsation mode. Pulse duration is approx. 1 ns at repetition rates of 200 to 500 MHz. Using the same setup active mode-locking of a BAL is achieved experimentally. Pulse durations of 103 ps are obtained. The Gaussian-like fundamental and higher order transverse modes up to mode No. 4 can be adjusted while the laser is operating in a mode-locked state. Experimentally, the simultaneous combination of mode-locking, transverse mode selection, and pulse shaping of a BAL in a modified 4f-setup implementing a spectral filter is investigated. Employing an optimized spectral sinc-like function as amplitude and phase filter the mode-locked BAL emits nearly square-shaped pulses with a pulse duration of 705 ps, while running close to the Gaussian-like transverse mode.
european quantum electronics conference | 2017
Christoph Doering; Ann-Katrin Kleinschmidt; Johannes Strassner; Henning Fouckhardt
Ga(As)Sb/GaAs quantum dot broad area lasers (BALs) with an emission wavelength of λ= 930 nm are realised. For suppressing the typical multi-transverse-mode operation of the BALs transverse mode selection filters are monolithically integrated into the laser crystal. Two different approaches are reported, which can both be considered Fourier-optical. Following our spatial-frequency-filter concept with 4f setup from [1] BALs with a monolithically integrated film waveguide lens on one facet and spatial filter elements on the other facet supporting the fundamental mode are developed [2]. The resonator length is l = f = 2700 μm determined by the focal length f of the film lens, the ridge width of 100 μm, and the filter width of 30 μm.
Optical Measurement Systems for Industrial Inspection X | 2017
Christoph Doering; Ann-Kathrin Kleinschmidt; Lars Barzen; Johannes Strassner; Henning Fouckhardt
Reflectance anisotropy spectroscopy (RAS) allows for in-situ monitoring of reactive ion etching (RIE) of monocrystalline III-V semiconductor surfaces. Upon use of RAS the sample to be etched is illuminated with broad-band linearly polarized light under nearly normal incidence. Commonly the spectral range is between 1.5 and 5.5 eV. Typically the spectrally resolved difference in reflectivity for light of two orthogonal linear polarizations of light is measured with respect to time - for example for cubic lattices (like the zinc blende structures of most III-V semiconductors) polarizations along the [110] and the [-110] direction. Local anisotropies on the etch front cause elliptical polarization of the reflected light resulting in the RAS signal. The time and photon energy resolved spectra of RAS include reflectometric as well as interferometric information. Light with wavelengths well above 100 nm (even inside the material) can be successfully used to monitor surface abrasion with a resolution of some tens of nanometers. The layers being thinned out act as optical interferometers resulting in Fabry-Perot oscillations of the RAS-signal. Here we report on RAS measurements assessing the surface deconstruction during dry etching. For low etch rates our experimental data show even better resolution than that of the (slow) Fabry-Perot oscillations. For certain photon energies we detect monolayer-etch-related oscillations in the mean reflectivity, which give the best possible resolution in etch depth monitoring and control, i.e. the atomic scale.
Advances in Optoelectronics | 2017
Henning Fouckhardt; Ann-Kathrin Kleinschmidt; Johannes Strassner; Christoph Doering
Previously we focused on fundamental transverse mode selection (TMS#0) of broad area semiconductor lasers (BALs) with two-arm folded integrated resonators for Fourier-optical spatial frequency filtering. The resonator had a round-trip length of 4f, where f is the focal length of the Fourier-transform element (FTE), that is, a cylindrical mirror in-between the orthogonal resonator branches. This 4f set-up can be called “retracted once” due to the reflective filter after 2f; that is, the 2f path was used forwards and backwards. Now the branches are retracted once more resulting in a compact 1f long linear resonator (called “retracted twice”) with a round-trip length of 2f. One facet accommodates the filter, while the other houses the FTE, now incorporating a film-waveguide lens. The BAL facet with the filter represents both the Fourier-transform plane (after 2f, i.e., one round-trip) as well as the image plane (after 4f, two round-trips). Thus filtering is performed even after 4f, not just after 2f. Experimental results reveal good fundamental TMS for pump currents up to 20% above threshold and a one-dimensional beam quality parameter = 1.47. The BALs are made from AlGaInAsSb, but the concept can equally well be employed for BALs of any material system.
Advances in Optical Technologies | 2017
Henning Fouckhardt; Johannes Strassner; Carina Heisel; Dominic Palm; Christoph Doering
Tunable microoptics deals with devices of which the optical properties can be changed during operation without mechanically moving solid parts. Often a droplet is actuated instead, and thus tunable microoptics is closely related to microfluidics. One such device/module/cell type is an optical shutter, which is moved in or out of the path of the light. In our case the transmitting part comprises a moving transparent and electrically conductive water droplet, embedded in a nonconductive blackened oil, that is, an opaque emulsion with attenuation of 30 dB at 570 nm wavelength over the 250 μm long light path inside the fluid (15 dB averaged over the visible spectral range). The insertion loss of the cell is 1.5 dB in the “open shutter” state. The actuation is achieved via electrowetting-on-dielectrics (EWOD) with rectangular AC voltage pulses of V peak-to-peak at 1 kHz. To flexibly allow for horizontal, vertical, and diagonal droplet movement in the upright x-y plane, the contact structures are prepared such that four possible stationary droplet positions exist. The cell is configured as two capacitors in series (along the axis), such that EWOD forces act symmetrically in the front and back of the 60 nl droplet with a response time of <20 ms.
Advances in Optoelectronics | 2014
Christoph Doering; Henning Fouckhardt
Experimental results of the combination of transverse mode selection and active mode-locking with anti-reflection-coated broad area lasers (BALs) are presented. The BALs are subject to feedback from a free-space external Fourier-optical 4-setup with a reflective spatial frequency filter in the Fourier-plane for transverse mode selection. Driving the BALs with a high frequency modulated pump current above threshold active longitudinal mode-locking is achieved. Pulse durations as low as 88 ps are obtained, while the Gaussian-like fundamental or a higher order transverse mode up to mode number 5 is selected on purpose. Pulse duration and shape are nearly independent of the selected transverse mode.
Proceedings of SPIE | 2011
Dirk Hoffmann; Klaus Huthmacher; Christoph Doering; Henning Fouckhardt
AlGaInAsSb-based broad area lasers (BALs) with a monolithically integrated Fourier-optical 4f set-up in a folded-resonator geometry are realized. The two resonator branches - each one d = 0.825 mm long - are connected through a dry-etched cylindrical total-internal-reflection (TIR) mirror acting as a Fourier-transform element. Transverse mode selection (TMS) is achieved by monolithically integrated spatial-frequency filters positioned in the back focal plane of the mirror (i.e. in the Fourier-transform plane). The whole resonator is gain section (active medium) as well as part of the TMS 4f set-up at the same time. The integration of TMS within the active BAL chip is shown to be successful. All employed BAL/TMS type-II heterostructure lasers are MBE-grown on GaSb substrates, designed for an emission wavelength in the mid-infrared around 2 μm. Different laser samples without any filter elements (no-TMS) and with filters for the selection of the fundamental transverse mode (#0; TMS0) are prepared and characterized. Just for a proof of principle also samples for the selection of higher order transverse modes, here exemplarily mode #6 (TMS6) and #8 (TMS8), have been processed and investigated. The free spectral range between the longitudinal modes is found to be around 0.33 nm corresponding to the BALs total-resonator length 2d = 1.65 mm (with an effective refractive index neff ≈ 3.8). This result strongly emphasizes that both resonator branches act together as one entity.