Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph J. Bolten is active.

Publication


Featured researches published by Christoph J. Bolten.


Nature Biotechnology | 2007

Complete genome sequence of the myxobacterium Sorangium cellulosum.

Susanne Schneiker; Olena Perlova; Olaf Kaiser; Klaus Gerth; Aysel Alici; Matthias O. Altmeyer; Daniela Bartels; Thomas Bekel; Stefan Beyer; Edna Bode; Helge B. Bode; Christoph J. Bolten; Jomuna V. Choudhuri; Sabrina Doss; Yasser A. Elnakady; Bettina Frank; Lars Gaigalat; Alexander Goesmann; Carolin Groeger; Frank Gross; Lars Jelsbak; Lotte Jelsbak; Jörn Kalinowski; Carsten Kegler; Tina Knauber; Sebastian Konietzny; Maren Kopp; Lutz Krause; Daniel Krug; Bukhard Linke

The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strains complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase–like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.


Metabolic Engineering | 2013

Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein.

André Luis Rodrigues; Nathalie Trachtmann; Judith Becker; Ananta F. Lohanatha; Jana Blotenberg; Christoph J. Bolten; Claudia Korneli; André Oliveira de Souza Lima; Luismar Marques Porto; Georg A. Sprenger; Christoph Wittmann

Violacein and deoxyviolacein are interesting therapeutics against pathogenic bacteria and viruses as well as tumor cells. In the present work, systems-wide metabolic engineering was applied to target Escherichia coli, a widely accepted recombinant host in pharmaceutical biotechnology, for production of these high-value products. The basic producer, E. coli dVio-1, that expressed the vioABCE cluster from Chromobacterium violaceum under control of the inducible araC system, accumulated 180 mg L(-1) of deoxyviolacein. Targeted intracellular metabolite analysis then identified bottlenecks in tryptophan supporting pathways, the major product building block. This was used for comprehensive engineering of serine, chorismate and tryptophan biosynthesis and the non-oxidative pentose-phosphate pathway. The final strain, E. coli dVio-6, accumulated 320 mg L(-1) deoxyviolacein in shake flask cultures. The created chassis of a high-flux tryptophan pathway was complemented by genomic integration of the vioD gene of Janthinobacterium lividum, which enabled exclusive production of violacein. In a fed-batch process, the resulting producer E. coli Vio-4 accumulated 710 mg L(-1) of the desired product. With straightforward broth extraction and subsequent crystallization, violacein could be obtained with 99.8% purity. This demonstrates the potential of E. coli as a platform for production of tryptophan based therapeutics.


Microbiology | 2008

Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR

Jens O. Krömer; Christoph J. Bolten; Elmar Heinzle; Hartwig Schröder; Christoph Wittmann

In the present work the metabolic response of Corynebacterium glutamicum to deletion of the global transcriptional regulator McbR, which controls, e.g. the expression of enzymes of L-methionine and L-cysteine biosynthesis and sulfur assimilation, was studied. Several oxidative stress proteins were significantly upregulated among about 40 proteins in response to deletion of McbR. Linked to this oxidative stress, the mutant exhibited a 50 % reduced growth rate, a 30 % reduced glucose uptake rate and a 30 % reduced biomass yield. It also showed metabolic flux rerouting in response to the deletion. NADPH metabolism was strongly altered. In contrast to the wild-type, the deletion strain supplied significantly more NADPH than required for anabolism, indicating the activity of additional NADPH-consuming reactions. These involved enzymes of oxidative stress protection. Through redirection of metabolic carbon flux in the central catabolism, including a 40 % increased tricarboxylic acid (TCA) cycle flux, the mutant revealed an enhanced NADPH supply to provide redox power for the antioxidant systems. This, however, was not sufficient to compensate for the oxidative stress, as indicated by the drastically disturbed redox equilibrium. The NADPH/NADP+ ratio in C. glutamicum DeltamcbR was only 0.29, and thus much lower than that of the wild-type (2.35). Similarly, the NADH/NAD+ ratio was substantially reduced from 0.18 in the wild-type to 0.08 in the mutant. Deletion of McbR is regarded as a key step towards biotechnological L-methionine overproduction in C. glutamicum. C. glutamicum DeltamcbR, however, did not overproduce L-methionine; this was very likely linked to the low availability of NADPH. Since oxidative stress is often observed in industrial production processes, engineering of NADPH metabolism could be a general strategy for improvement of production strains. Unlike the wild-type, C. glutamicum DeltamcbR contained large granules with high phosphorus content. The storage of these energy-rich polyphosphates is probably the result of a large excess of formation of ATP, as revealed by estimation of the underlying fluxes linked to energy metabolism.


Biotechnology and Bioengineering | 2012

Debottlenecking recombinant protein production in Bacillus megaterium under large-scale conditions—targeted precursor feeding designed from metabolomics

Claudia Korneli; Christoph J. Bolten; Thibault Godard; Ezequiel Franco-Lara; Christoph Wittmann

In the present work the impact of large production scale was investigated for Bacillus megaterium expressing green fluorescent protein (GFP). Specifically designed scale‐down studies, mimicking the intermittent and continuous nutrient supply of large‐ and small‐scale processes, were carried out for this purpose. The recombinant strain revealed a 40% reduced GFP yield for the large‐scale conditions. In line with extended carbon loss via formation of acetate and carbon dioxide, this indicated obvious limitations in the underlying metabolism of B. megaterium under the large‐scale conditions. Quantitative analysis of intracellular amino acids via validated fast filtration protocols revealed that their level strongly differed between the two scenarios. During cultivation in large‐scale set‐up, the availability of most amino acids, serving as key building blocks of the recombinant protein, was substantially reduced. This was most pronounced for tryptophan, aspartate, histidine, glutamine, and lysine. In contrast alanine was increased, probably related to a bottleneck at the level of pyruvate which also triggered acetate overflow metabolism. The pre‐cursor quantifications could then be exploited to verify the presumed bottlenecks and improve recombinant protein production under large‐scale conditions. Addition of only 5 mM tryptophan, aspartate, histidine, glutamine, and lysine to the feed solution increased the GFP yield by 100%. This rational concept of driving the lab scale productivity of recombinant microorganisms under suboptimal feeding conditions emulating large scale can easily be extended to other processes and production hosts. Biotechnol. Bioeng. 2012; 109:1538–1550.


Applied and Environmental Microbiology | 2014

The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions.

Philipp Adler; Lasse Jannis Frey; Antje Berger; Christoph J. Bolten; Carl Erik Hansen; Christoph Wittmann

ABSTRACT Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present.


Biotechnology Letters | 2012

Microbial production of the drugs violacein and deoxyviolacein: analytical development and strain comparison.

André Luis Rodrigues; Yvonne Göcke; Christoph J. Bolten; Nelson L. Brock; Jeroen S. Dickschat; Christoph Wittmann

Violacein and deoxyviolacein display a broad range of interesting biological properties but their production is rarely distinguished due to the lack of suitable analytical methods. An HPLC method has been developed for the separation and quantification of violacein and deoxyviolacein and can determine the content of both molecules in microbial cultures. A comparison of different production microorganisms, including recombinant Escherichia coli and the natural producer Janthinobacterium lividum, revealed that the formation of violacein and deoxyviolacein is strain-specific but showed significant variation during growth although the ratio between the two compounds remained constant.


Applied and Environmental Microbiology | 2013

Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions.

Philipp Adler; Christoph J. Bolten; Katrin Dohnt; Carl Erik Hansen; Christoph Wittmann

ABSTRACT In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity.


Research in Microbiology | 2011

On the origin of the electrostatic surface potential of Aspergillus niger spores in acidic environments.

Andreas Wargenau; André Fleissner; Christoph J. Bolten; Manfred Rohde; Ingo Kampen; Arno Kwade

The electrostatic surface potential of fungal spores is generally regarded as potentially influencing spore aggregation and pellet formation in submerged cultures of filamentous fungi. Spores of Aspergillus niger are typically characterized by negative zeta potentials over a wide range of pH values. In this study, this particular behavior is ascribed to the presence of an extensive melanin coating. It is proposed on the basis of zeta potential and pigment extraction experiments that this outermost layer affects the pH-dependent surface potential in two manners: (i) by the addition of negative charges to the spore surface and (ii) by the pH-dependent release of melanin pigment. Chemical analyses revealed that deprotonation of melanin-bound carboxyl groups is most probably responsible for pigment release under acidic conditions. These findings were incorporated into a simple model which has the ability to qualitatively explain the results of zeta potential experiments and, moreover, to provide the basis for quantitative investigations on the role of electrostatics in spore aggregation.


Analytical Biochemistry | 2009

Numerical bias estimation for mass spectrometric mass isotopomer analysis

Tae Hoon Yang; Christoph J. Bolten; Maddalena V. Coppi; Jun Sun; Elmar Heinzle

Mass spectrometric (MS) isotopomer analysis has become a standard tool for investigating biological systems using stable isotopes. In particular, metabolic flux analysis uses mass isotopomers of metabolic products typically formed from (13)C-labeled substrates to quantitate intracellular pathway fluxes. In the current work, we describe a model-driven method of numerical bias estimation regarding MS isotopomer analysis. Correct bias estimation is crucial for measuring statistical qualities of measurements and obtaining reliable fluxes. The model we developed for bias estimation corrects a priori unknown systematic errors unique for each individual mass isotopomer peak. For validation, we carried out both computational simulations and experimental measurements. From stochastic simulations, it was observed that carbon mass isotopomer distributions and measurement noise can be determined much more precisely only if signals are corrected for possible systematic errors. By removing the estimated background signals, the residuals resulting from experimental measurement and model expectation became consistent with normality, experimental variability was reduced, and data consistency was improved. The method is useful for obtaining systematic error-free data from (13)C tracer experiments and can also be extended to other stable isotopes. As a result, the reliability of metabolic fluxes that are typically computed from mass isotopomer measurements is increased.


Plant Physiology | 2016

Novel Approach for High-Throughput Metabolic Screening of Whole Plants by Stable Isotopes

Lisa Maria Dersch; Veronique Beckers; Detlev Rasch; Guido Melzer; Christoph J. Bolten; Katina Kiep; Horst Becker; Oliver Ernst Bläsing; Regine Fuchs; Thomas Ehrhardt; Christoph Wittmann

Stable isotopic labeling combined with combustion isotope ratio mass spectrometry elucidates metabolic properties of whole plants under strictly controlled physiological conditions. Here, we demonstrate whole-plant metabolic profiling by stable isotope labeling and combustion isotope-ratio mass spectrometry for precise quantification of assimilation, translocation, and molecular reallocation of 13CO2 and 15NH4NO3. The technology was applied to rice (Oryza sativa) plants at different growth stages. For adult plants, 13CO2 labeling revealed enhanced carbon assimilation of the flag leaf from flowering to late grain-filling stage, linked to efficient translocation into the panicle. Simultaneous 13CO2 and 15NH4NO3 labeling with hydroponically grown seedlings was used to quantify the relative distribution of carbon and nitrogen. Two hours after labeling, assimilated carbon was mainly retained in the shoot (69%), whereas 7% entered the root and 24% was respired. Nitrogen, taken up via the root, was largely translocated into the shoot (85%). Salt-stressed seedlings showed decreased uptake and translocation of nitrogen (69%), whereas carbon metabolism was unaffected. Coupled to a gas chromatograph, labeling analysis provided enrichment of proteinogenic amino acids. This revealed significant protein synthesis in the panicle of adult plants, whereas protein biosynthesis in adult leaves was 8-fold lower than that in seedling shoots. Generally, amino acid enrichment was similar among biosynthetic families and allowed us to infer labeling dynamics of their precursors. On this basis, early and strong 13C enrichment of Embden-Meyerhof-Parnas pathway and pentose phosphate pathway intermediates indicated high activity of these routes. Applied to mode-of-action analysis of herbicides, the approach showed severe disturbance in the synthesis of branched-chain amino acids upon treatment with imazapyr. The established technology displays a breakthrough for quantitative high-throughput plant metabolic phenotyping.

Collaboration


Dive into the Christoph J. Bolten's collaboration.

Top Co-Authors

Avatar

Christoph Wittmann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Luis Rodrigues

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Claudia Korneli

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philipp Adler

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge