Christoph K. Thoeringer
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph K. Thoeringer.
Science | 2011
Damian Refojo; Martin Schweizer; Claudia Kuehne; Stefanie Ehrenberg; Christoph K. Thoeringer; Annette M. Vogl; Nina Dedic; Marion Schumacher; Gregor von Wolff; Charilaos Avrabos; Chadi Touma; David Engblom; Günther Schütz; Klaus-Armin Nave; Matthias Eder; Carsten T. Wotjak; Inge Sillaber; Florian Holsboer; Wolfgang Wurst; Jan M. Deussing
An imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disturbances. The corticotropin-releasing hormone receptor 1 (CRHR1) critically controls behavioral adaptation to stress and is causally linked to emotional disorders. Using neurochemical and genetic tools, we determined that CRHR1 is expressed in forebrain glutamatergic and γ-aminobutyric acid–containing (GABAergic) neurons as well as in midbrain dopaminergic neurons. Via specific CRHR1 deletions in glutamatergic, GABAergic, dopaminergic, and serotonergic cells, we found that the lack of CRHR1 in forebrain glutamatergic circuits reduces anxiety and impairs neurotransmission in the amygdala and hippocampus. Selective deletion of CRHR1 in midbrain dopaminergic neurons increases anxiety-like behavior and reduces dopamine release in the prefrontal cortex. These results define a bidirectional model for the role of CRHR1 in anxiety and suggest that an imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disorders.
Journal of Neural Transmission | 2009
Christoph K. Thoeringer; Stephan Ripke; P. G. Unschuld; Susanne Lucae; Marcus Ising; Thomas Bettecken; Manfred Uhr; Martin E. Keck; Bertram Mueller-Myhsok; Florian Holsboer; Elisabeth B. Binder
Recent evidence suggests that the GABA transporter 1 (GAT-1; SLC6A1) plays a role in the pathophysiology and treatment of anxiety disorders. In order to understand the impact of genetic variation within SLC6A1 on pathological anxiety, we performed a case–control association study with anxiety disorder patients with and without syndromal panic attacks. Using the method of sequential addition of cases, we found that polymorphisms in the 5′ flanking region of SLC6A1 are highly associated with anxiety disorders when considering the severity of syndromal panic attacks as phenotype covariate. Analysing the effect size of the association, we observed a constant increase in the odds ratio for disease susceptibility with an increase in panic severity (OR ~ 2.5 in severely affected patients). Nominally significant association effects were observed considering the entire patient sample. These data indicate a high load of genetic variance within SLC6A1 on pathological anxiety and highlight GAT-1 as a promising target for treatment of anxiety disorders with panic symptoms.
Psychoneuroendocrinology | 2007
Christoph K. Thoeringer; Inge Sillaber; Angelika Roedel; Marianne B. Mueller; Frauke Ohl; Florian Holsboer; Martin E. Keck
There is strong evidence for a pivotal interaction of corticosteroid signalling and behavioral adaptation to stress. To further elucidate this relation, we monitored the dynamics of free corticosterone in the murine hippocampus of two inbred mouse strains using in vivo microdialysis. C57BL/6JOlaHsd (C57BL/6) and DBA/2OlaHsd (DBA/2) inbred mouse strains have been shown to differ in their anxiety-related and depression-like behavior and provide, thus, an interesting animal model to study the stimulus-response profile of the hypothalamus-pituitary-adrenocortical (HPA) system as a function of emotional and physical load. We, first, compared peripheral and intracerebral concentration patterns of corticosterone by simultaneous microdialysis of the jugular vein and the hippocampus in anesthetized mice and found strain differences in blood versus intracerebral free corticosterone concentrations. C57BL/6 showed almost the same steroid levels in either compartment, whereas DBA/2 mice displayed higher glucocorticoid levels in the circulation than in the hippocampus. This data suggest a strain difference in the tissue environment influencing the amount of biological active corticosterone at the receptor site. Measurements of intrahippocampal corticosterone in freely moving mice revealed that DBA/2 display a prolonged glucocorticoid increase in response to a single forced swimming stress (FST), as compared to C57BL/6 mice indicating a reduced inhibitory HPA axis feedback. Exposure to a novel environment (NE) induced a desensitization of the HPA system in DBA/2 animals as they show an attenuated intracerebral corticosterone dynamics after a subsequent FST. Testing animals in an elevated plus-maze (EPM), however, did not significantly stimulate coriticosterone release in either strain. The analysis of the area under the curve revealed a high amount of corticosterone released through FST and a low glucocorticoid release after NE or EPM exposure that are independent of the strain. This data indicate a strong stimulus dependency of corticosterone secretion that is strain independent, whereas the dynamics and feedback of the HPA axis is different between both inbred strains. Behavioral phenotyping of animals revealed a strong impact of microdialysis procedure on FST and EPM performance. Innate emotionality differences of both strains, however, were not affected. Though descriptive in nature, the present results suggest an altered corticosteroid signalling in the DBA/2 strain compared to C57BL/6 mice. Whether this observation causally underlies the differences in anxiety-related and depression-like behavior has to be further experimentally validated. In addition, our study highlights the use of in vivo microdialysis to assess the neuroendocrine endophenotype of animal models via profiling of stimulus-response patterns of stress hormones.
Neuropsychopharmacology | 2012
Christoph K. Thoeringer; Kathrin Henes; Matthias Eder; Maik Dahlhoff; Wolfgang Wurst; Florian Holsboer; Jan M. Deussing; Sven Moosmang; Carsten T. Wotjak
Persistent dreadful memories and hyperarousal constitute prominent psychopathological features of posttraumatic stress disorder (PTSD). Here, we used a contextual fear conditioning paradigm to demonstrate that conditional genetic deletion of corticotropin-releasing hormone (CRH) receptor 1 within the limbic forebrain in mice significantly reduced remote, but not recent, associative and non-associative fear memories. Per os treatment with the selective CRHR1 antagonist DMP696 (3 mg/kg) attenuated consolidation of remote fear memories, without affecting their expression and retention. This could be achieved, if DMP696 was administered for 1 week starting as late as 24 h after foot shock. Furthermore, by combining electrophysiological recordings and western blot analyses, we demonstrate a delayed-onset and long-lasting increase in AMPA receptor (AMPAR) GluR1-mediated signaling in the dentate gyrus (DG) of the dorsal hippocampus 1 month after foot shock. These changes were absent from CRHR1-deficient mice and after DMP696 treatment. Inactivation of hippocampal GluR1-containing AMPARs by antisense oligonucleotides or philantotoxin 433 confirmed the behavioral relevance of AMPA-type glutamatergic neurotransmission in maintaining the high levels of remote fear in shocked mice with intact CRHR1 signaling. We conclude that limbic CRHR1 receptors enhance the consolidation of remote fear memories in the first week after foot shock by increasing the expression of Ca2+-permeable GluR1-containing AMPARs in the DG. These findings suggest both receptors as rational targets for the prevention and therapy, respectively, of psychopathology associated with exaggerated fear memories, such as PTSD.
Journal of Psychopharmacology | 2010
Christoph K. Thoeringer; Inge Sillaber; Marianne B. Mueller; Frauke Ohl; Florian Holsboer; Martin E. Keck
Gamma-aminobutyric acid (GABA) system plays a pivotal role in the pathophysiology of anxiety and mood disorders. This study was aimed to assess the anxiolytic and antidepressant-like properties of tiagabine, an inhibitor of the GABA transporter-1 (GAT-1), after acute and chronic administration in C57BL/6JOlaHsD mice with paroxetine as a positive control. In first experiments, the acute administration of tiagabine (7.5 mg/kg, orally [PO]) and paroxetine (10 mg/kg PO) induced anxiolytic effects in the elevated plus maze test and the modified hole board test and an antidepressant-like effect in the forced swim test. Chronic application of tiagabine (7.5 mg/kg PO) and paroxetine (10 mg/kg PO) for 22 days revealed an anxiolytic and antidepressant-like efficacy of tiagabine only. In a further experiment, we analysed the impact of chronic tiagabine versus paroxetine treatment on the hypothalamic-pituitary-adrenocortical (HPA) system regulation. GAT-1 blockade induced a setpoint-shift of the stress hormone system toward lower levels as indicated by decreased plasma corticosterone concentrations and attenuated gene expression levels of corticotropin-releasing factor in the paraventricular nucleus of the hypothalamus and of hippocampal steroid receptors. This data indicate that both acute and long-term anxiolytic and antidepressant-like properties of brain GAT-1 inhibition coincide with a reduction in HPA system activity in mice.
Neuroscience | 2007
Evelin Painsipp; Thomas Wultsch; Anaid Shahbazian; Martin Edelsbrunner; Michael C. Kreissl; Andreas Schirbel; Elisabeth Bock; Maria Anna Pabst; Christoph K. Thoeringer; Peter Holzer
There is a gender-related comorbidity of pain-related and inflammatory bowel diseases with psychiatric diseases. Since the impact of experimental gastrointestinal inflammation on the emotional-affective behavior is little known, we examined whether experimental gastritis modifies anxiety, stress coping and circulating corticosterone in male and female Him:OF1 mice. Gastritis was induced by adding iodoacetamide (0.1%) to the drinking water for at least 7 days. Inflammation was assessed by gastric histology and myeloperoxidase activity, circulating corticosterone determined by enzyme immunoassay, anxiety-related behavior evaluated with the elevated plus maze and stress-induced hyperthermia tests, and depression-like behavior estimated with the tail suspension test. Iodoacetamide-induced gastritis was associated with gastric mucosal surface damage and an increase in gastric myeloperoxidase activity, this increase being significantly larger in female mice than in male mice. The rectal temperature of male mice treated with iodoacetamide was enhanced, whereas that of female mice was diminished. The circulating levels of corticosterone were reduced by 65% in female mice treated with iodoacetamide but did not significantly change in male mice. On the behavioral level, iodoacetamide treatment caused a decrease in nocturnal home-cage activity, drinking and feeding. While depression-related behavior remained unaltered following induction of gastritis, behavioral indices of anxiety were significantly enhanced in female but not male mice. There was no correlation between the estrous cycle and anxiety as well as circulating corticosterone. Radiotracer experiments revealed that iodoacetamide did not readily enter the brain, the blood-brain ratio being 20:1. Collectively, these data show that iodoacetamide treatment causes gastritis in a gender-related manner, its severity being significantly greater in female than in male mice. The induction of gastritis in female mice is associated with a reduction of circulating corticosterone and an enforcement of behavioral indices of anxiety. Gastric inflammation thus has a distinct gender-dependent influence on emotional-affective behavior and its neuroendocrine control.
Digestion | 2015
Peter Klare; Johanna Nigg; Johannes Nold; Bernhard Haller; Anne Krug; Sebastian Mair; Christoph K. Thoeringer; Jeffrey W. Christle; Roland M. Schmid; Martin Halle; Wolfgang Huber
Background: Improving health-related quality of life is a primary target of therapy for patients with inflammatory bowel disease. Physical activity has been demonstrated to improve health-related quality of life in several patient populations with chronic disease. There are very few studies investigating the effects of physical activity on health-related quality of life in inflammatory bowel disease. The primary purpose of this study is to investigate the effects of 10 weeks of moderate physical activity on health-related quality of life in patients with inflammatory bowel disease. Methods: Thirty patients with mild to moderate IBD (Crohn‘s Disease Activity Index (CDAI) <220 or Rachmilewitz Index (RI) <11) were randomized 1:1 to either supervised moderate-intensity running thrice a week for 10 weeks or a control group who were not prescribed any exercise. Health-related quality of life, symptoms, and inflammation were assessed at baseline and after 10 weeks. Results: Participants were 41 ± 14 years (73% female), had a body mass index of 22.8 ± 4.1 kg/m2, and an average CDAI or RI of 66.8 ± 42.4 and 3.6 ± 3.1. No adverse events occurred during the 10-week training period. Health-related quality of life, reported as IBDQ total score, improved 19% in the intervention group and 8% in the control group. Scores for the IBDQ social sub-scale were significantly improved in the intervention group compared with controls (ΔIBDQsocial = 6.27 ± 5.46 vs. 1.87 ± 4.76, p = 0.023). Conclusion: Patients suffering from moderately active IBD are capable of performing symptom-free regular endurance exercise. Our data support the assumption that PA is feasible in IBD patients. PA may furthermore improve quality of life through improvements in social well-being, and may, therefore, be a useful adjunct to IBD therapy.
Pain | 2015
Angela Jurik; Eva Auffenberg; Sabine Klein; Jan M. Deussing; Roland M. Schmid; Carsten T. Wotjak; Christoph K. Thoeringer
Abstract Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical “feedforward inhibition” in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.
Journal of Neuroendocrinology | 2010
Jan-Michael Heinzmann; Christoph K. Thoeringer; Alana Knapman; Rupert Palme; Florian Holsboer; Manfred Uhr; Rainer Landgraf; Chadi Touma
The hypothalamic‐pituitary‐adrenocortical (HPA) axis is one of the major stress hormone systems, and glucocorticoids (GCs) play a pivotal role in homeostatic processes throughout the body and brain. A dysregulation of the HPA axis, leading to an aberrant secretion of GCs, is associated with affective disorders such as major depression. In the present study, three mouse lines selectively bred for high (HR), intermediate (IR) or low (LR) stress reactivity were used to elucidate the temporal dynamics of intrahippocampal corticosterone (CORT) in response to a standardised stressor. In particular, we addressed the question of whether the distinct differences in HPA axis reactivity between the three mouse lines, as determined by plasma CORT measurements, are present in the central nervous system as well, and if the respective endophenotype is brought about by alterations in blood–brain barrier (BBB) functionality. We applied in vivo microdialysis in the hippocampus, demonstrating that the concentrations of CORT released from the adrenals in response to restraint stress are not only distinctly different in the plasma, but can also be found in the central nervous system, although the differences between the three mouse lines were attenuated, particularly between IR and LR animals. Additionally, a time lag of approximately 60 min was observed in all three lines regarding intrahippocampal peak concentrations of CORT after the onset of the stressor. Furthermore, we showed that the penetration and clearance of CORT in the hippocampal tissue was not affected by differences in BBB functionality because the multidrug resistance 1 P‐glycoprotein (Mdr1 Pgp) was equally expressed in HR, IR and LR mice. Furthermore, we could exclude surgical damage of the BBB because peripherally‐injected dexamethasone, which is a high affinity substrate for the Mdr1 Pgp and therefore restricted from entering the brain, could only be detected in the plasma and was virtually absent in the brain.
Psychoneuroendocrinology | 2007
Christoph K. Thoeringer; Thomas Wultsch; Anaid Shahbazian; Evelin Painsipp; Peter Holzer
The multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) is a major gate-keeper at the blood-brain barrier (BBB), protecting the central nervous system from accumulation of toxic xenobiotics and drugs. In addition, MDR1 p-gp has been found to control the intracerebral access of glucocorticoid hormones and thus to modulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) system. In view of the implication of glucocorticoids in the control of behavior, we examined how acute pharmacological inhibition of MDR1 p-gp at the BBB by tariquidar (XR9576; 12 mg/kg, PO) impacts the neuroendocrine and behavioral processing of stress in C57BL/6JIcoHim inbred mice. Inhibition of MDR1 p-gp at the BBB did not alter emotional behavior at baseline. However, mice that were sensitized by water-avoidance stress, a mild psychological stressor, displayed significantly reduced anxiety-related behavior in the elevated plus-maze test when treated with tariquidar. Tariquidar, however, had no effect on stress-coping performance assessed in the forced swim test. Investigating the impact of acute MDR1 p-gp inhibition on the glucocorticoid system, we observed a significant attenuation of the mild stress-induced increase of plasma corticosterone after tariquidar administration. In order to examine whether the anti-anxiety effect of tariquidar in sensitized animals is mediated by glucocorticoids, the animals were treated with corticosterone (1mg/kg, SC) immediately after exposure to water-avoidance stress. Corticosterone caused a significant anxiolytic-like effect in this stress-related anxiety protocol, whereas tariquidar could not further enhance corticosterones anti-anxiety effects. The current data show for the first time that pharmacological inhibition of MDR1 p-gp at the murine BBB by tariquidar alters emotional behavior and HPA axis activity. By facilitating the entry of corticosterone into the brain, tariquidar enhances feedback inhibition of the HPA system and in this way improves anxiety-related stress processing. These findings highlight a novel approach to the treatment of stress-related affective disorders in humans.