Christoph Plutzar
Adria Airways
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Plutzar.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Helmut Haberl; K. Heinz Erb; Fridolin Krausmann; Veronika Gaube; Alberte Bondeau; Christoph Plutzar; Simone Gingrich; Wolfgang Lucht; Marina Fischer-Kowalski
Human appropriation of net primary production (HANPP), the aggregate impact of land use on biomass available each year in ecosystems, is a prominent measure of the human domination of the biosphere. We present a comprehensive assessment of global HANPP based on vegetation modeling, agricultural and forestry statistics, and geographical information systems data on land use, land cover, and soil degradation that localizes human impact on ecosystems. We found an aggregate global HANPP value of 15.6 Pg C/yr or 23.8% of potential net primary productivity, of which 53% was contributed by harvest, 40% by land-use-induced productivity changes, and 7% by human-induced fires. This is a remarkable impact on the biosphere caused by just one species. We present maps quantifying human-induced changes in trophic energy flows in ecosystems that illustrate spatial patterns in the human domination of ecosystems, thus emphasizing land use as a pervasive factor of global importance. Land use transforms earths terrestrial surface, resulting in changes in biogeochemical cycles and in the ability of ecosystems to deliver services critical to human well being. The results suggest that large-scale schemes to substitute biomass for fossil fuels should be viewed cautiously because massive additional pressures on ecosystems might result from increased biomass harvest.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Fridolin Krausmann; Karl-Heinz Erb; Simone Gingrich; Helmut Haberl; Alberte Bondeau; Veronika Gaube; Christian Lauk; Christoph Plutzar; Timothy D. Searchinger
Global increases in population, consumption, and gross domestic product raise concerns about the sustainability of the current and future use of natural resources. The human appropriation of net primary production (HANPP) provides a useful measure of human intervention into the biosphere. The productive capacity of land is appropriated by harvesting or burning biomass and by converting natural ecosystems to managed lands with lower productivity. This work analyzes trends in HANPP from 1910 to 2005 and finds that although human population has grown fourfold and economic output 17-fold, global HANPP has only doubled. Despite this increase in efficiency, HANPP has still risen from 6.9 Gt of carbon per y in 1910 to 14.8 GtC/y in 2005, i.e., from 13% to 25% of the net primary production of potential vegetation. Biomass harvested per capita and year has slightly declined despite growth in consumption because of a decline in reliance on bioenergy and higher conversion efficiencies of primary biomass to products. The rise in efficiency is overwhelmingly due to increased crop yields, albeit frequently associated with substantial ecological costs, such as fossil energy inputs, soil degradation, and biodiversity loss. If humans can maintain the past trend lines in efficiency gains, we estimate that HANPP might only grow to 27–29% by 2050, but providing large amounts of bioenergy could increase global HANPP to 44%. This result calls for caution in refocusing the energy economy on land-based resources and for strategies that foster the continuation of increases in land-use efficiency without excessively increasing ecological costs of intensification.
Journal of Land Use Science | 2007
Karl-Heinz Erb; Veronika Gaube; Fridolin Krausmann; Christoph Plutzar; Alberte Bondeau; Helmut Haberl
This article presents a medium resolution land use data set (5 arc min, c. 10 × 10 km) for the year 2000 that reproduces national land use statistics for cropland and forestry at the country level. We distinguish five land use classes displayed as percent-per-gridcell layers: cropland, grazing, forestry, urban and infrastructure areas, and areas without land use. For each gridcell, the sum of these five layers is 100%; that is, the Earths total land area is allocated to these five classes. Spatial patterns are derived from available thematic maps and reconciled with national extents from census data. Statistical comparisons of the resulting maps with MODIS and CORINE data demonstrate the reliability of our data set; remaining discrepancies can be largely explained by the conceptual difference between land use and land cover. The data set presented here is aimed to support the systematic integration of socio-economic and ecological data in integrated analyses of the coupled global land system. The data set can be downloaded at http://www.iff.ac.at/socec/.
Biomass & Bioenergy | 2011
Helmut Haberl; Karl-Heinz Erb; Fridolin Krausmann; Alberte Bondeau; Christian Lauk; Christoph Müller; Christoph Plutzar; Julia K. Steinberger
There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply.
Environmental Research Letters | 2016
Tobias Kuemmerle; Christian Levers; Karl-Heinz Erb; Stephan Estel; Martin Rudbeck Jepsen; Daniel Müller; Christoph Plutzar; Julia Stürck; Pieter Johannes Verkerk; Peter H. Verburg; Anette Reenberg
Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions. We compiled and analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes. We found a clear East–West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990–2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.
Journal of Industrial Ecology | 2018
Konstantin Stadler; Richard Wood; Tatyana Bulavskaya; Carl-Johan Södersten; Moana Simas; Sarah Schmidt; Arkaitz Usubiaga; José Acosta-Fernández; Jeroen Kuenen; Martin Bruckner; Stefan Giljum; Stephan Lutter; Stefano Merciai; Jannick Højrup Schmidt; Michaela Clarissa Theurl; Christoph Plutzar; Thomas Kastner; Nina Eisenmenger; Karl-Heinz Erb; Arjan de Koning; Arnold Tukker
Environmentally extended multiregional input-output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental-Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3-a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply-use tables (SUTs) in a 163 industry by 200 products classification as the main building locks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource xtraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Nature | 2017
Karl-Heinz Erb; Thomas Kastner; Christoph Plutzar; Anna Liza S. Bais; Nuno Carvalhais; Tamara Fetzel; Simone Gingrich; Helmut Haberl; Christian Lauk; Maria Niedertscheider; Julia Pongratz; Martin Thurner; Sebastiaan Luyssaert
Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53–58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42–47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.
Conservation Letters | 2017
Justin Kitzes; Eric L. Berlow; Erin Conlisk; Karl-Heinz Erb; Katsunori Iha; Neo D. Martinez; Erica A. Newman; Christoph Plutzar; Adam B. Smith; John Harte
Abstract Although most conservation efforts address the direct, local causes of biodiversity loss, effective long‐term conservation will require complementary efforts to reduce the upstream economic pressures, such as demands for food and forest products, which ultimately drive these downstream losses. Here, we present a wildlife footprint analysis that links global losses of wild birds to consumer purchases across 57 economic sectors in 129 regions. The United States, India, China, and Brazil have the largest regional wildlife footprints, while per‐person footprints are highest in Mongolia, Australia, Botswana, and the United Arab Emirates. A US
Environmental Research Letters | 2016
Maria Niedertscheider; Thomas Kastner; Tamara Fetzel; Helmut Haberl; Christine Kroisleitner; Christoph Plutzar; Karl-Heinz Erb
100 purchase of bovine meat or rice products occupies approximately 0.1 km2 of wild bird ranges, displacing 1–2 individual birds, for 1 year. Globally significant importer regions, including Japan, the United Kingdom, Germany, Italy, and France, have large footprints that drive wildlife losses elsewhere in the world and represent important targets for consumption‐focused conservation attention.
Social Ecology. Society-Nature Relations across Time and Space | 2016
Karl-Heinz Erb; Tamara Fetzel; Helmut Haberl; Thomas Kastner; Christine Kroisleitner; Christian Lauk; Maria Niedertscheider; Christoph Plutzar
Meeting expected surges in global biomass demand while protecting pristine ecosystems likely requires intensification of current croplands. Yet many uncertainties relate to the potentials for cropland intensification, mainly because conceptualizing and measuring land use intensity is intricate, particularly at the global scale. We present a spatially explicit analysis of global cropland use intensity, following an ecological energy flow perspective. We analyze (a) changes of net primary production (NPP) from the potential system (i.e. assuming undisturbed vegetation) to croplands around 2000 and relate these changes to (b) inputs of (N) fertilizer and irrigation and (c) to biomass outputs, allowing for a three dimensional focus on intensification. Globally the actual NPP of croplands, expressed as per cent of their potential NPP (NPPact%), amounts to 77%. A mix of socio-economic and natural factors explains the high spatial variation which ranges from 22.6% to 416.0% within the inner 95 percentiles. NPPact% is well below NPPpot in many developing, (Sub-) Tropical regions, while it massively surpasses NPPpot on irrigated drylands and in many industrialized temperate regions. The interrelations of NPP losses (i.e. the difference between NPPact and NPPpot), agricultural inputs and biomass harvest differ substantially between biogeographical regions. Maintaining NPPpot was particularly N-intensive in forest biomes, as compared to cropland in natural grassland biomes. However, much higher levels of biomass harvest occur in forest biomes. We show that fertilization loads correlate with NPPact% linearly, but the relation gets increasingly blurred beyond a level of 125 kgN ha−1. Thus, large potentials exist to improve N-efficiency at the global scale, as only 10% of global croplands are above this level. Reallocating surplus N could substantially reduce NPP losses by up to 80% below current levels and at the same time increase biomass harvest by almost 30%. However, we also show that eradicating NPP losses globally might not be feasible due to the high input costs and associated sustainability implications. Our analysis emphasizes the necessity to avoid mono-dimensional perspectives with respect to research on sustainable intensification pathways and the potential of integrated socio-ecological approaches for consistently contrasting environmental trade-offs and societal benefits of land use intensification.