Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Reinhard is active.

Publication


Featured researches published by Christoph Reinhard.


The EMBO Journal | 1997

Rapamycin suppresses 5'TOP mRNA translation through inhibition of p70s6k.

Harold B.J. Jefferies; Stefano Fumagalli; Patrick B. Dennis; Christoph Reinhard; Richard B. Pearson; George Thomas

Treatment of mammalian cells with the immunosuppressant rapamycin, a bacterial macrolide, selectively suppresses mitogen‐induced translation of an essential class of mRNAs which contain an oligopyrimidine tract at their transcriptional start (5′TOP), most notably mRNAs encoding ribosomal proteins and elongation factors. In parallel, rapamycin blocks mitogen‐induced p70 ribosomal protein S6 kinase (p70s6k) phosphorylation and activation. Utilizing chimeric mRNA constructs containing either a wild‐type or disrupted 5′TOP, we demonstrate that an intact polypyrimidine tract is required for rapamycin to elicit an inhibitory effect on the translation of these transcripts. In turn, a dominant‐interfering p70s6k, which selectively prevents p70s6k activation by blocking phosphorylation of the rapamycin‐sensitive sites, suppresses the translation of the chimeric mRNA containing the wild‐type but not the disrupted 5′TOP. Conversion of the principal rapamycin‐sensitive p70s6k phosphorylation site, T389, to an acidic residue confers rapamycin resistance on the kinase and negates the inhibitory effects of the macrolide on 5′TOP mRNA translation in cells expressing this mutant. The results demonstrate that the rapamycin block of mitogen‐induced 5′TOP mRNA translation is mediated through inhibition of p70s6k activation.


Nature Genetics | 2012

Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma

Wing-Kin Sung; Hancheng Zheng; Shuyu Li; Ronghua Chen; Xiao Liu; Yingrui Li; Nikki P. Lee; Wah H Lee; Pramila Ariyaratne; Fabianus Hendriyan Mulawadi; Kwong F. Wong; Angela M. Liu; Ronnie Tung-Ping Poon; Sheung Tat Fan; Kwong Leung Chan; Zhuolin Gong; Yujie Hu; Zhao Lin; Guan Wang; Qinghui Zhang; Thomas D. Barber; Wen-Chi Chou; Amit Aggarwal; Ke Hao; Wei Zhou; Chunsheng Zhang; James C. Hardwick; Carolyn A. Buser; Jiangchun Xu; Zhengyan Kan

To survey hepatitis B virus (HBV) integration in liver cancer genomes, we conducted massively parallel sequencing of 81 HBV-positive and 7 HBV-negative hepatocellular carcinomas (HCCs) and adjacent normal tissues. We found that HBV integration is observed more frequently in the tumors (86.4%) than in adjacent liver tissues (30.7%). Copy-number variations (CNVs) were significantly increased at HBV breakpoint locations where chromosomal instability was likely induced. Approximately 40% of HBV breakpoints within the HBV genome were located within a 1,800-bp region where the viral enhancer, X gene and core gene are located. We also identified recurrent HBV integration events (in ≥4 HCCs) that were validated by RNA sequencing (RNA-seq) and Sanger sequencing at the known and putative cancer-related TERT, MLL4 and CCNE1 genes, which showed upregulated gene expression in tumor versus normal tissue. We also report evidence that suggests that the number of HBV integrations is associated with patient survival.


Journal of Biological Chemistry | 1998

Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha.

Anne Roulston; Christoph Reinhard; Payman Amiri; Lewis T. Williams

Fas ligand and tumor necrosis factor α (TNF) bind to members of the TNF receptor superfamily. Stimulation by Fas ligand results in apoptosis, whereas TNF induces multiple effects including proliferation, differentiation, and apoptosis. Activation of the c-Jun N-terminal kinase (JNK) and p38 kinase pathways is common to Fas and TNF signaling; however, their role in apoptosis is controversial. Fas receptor cross-linking induces apoptosis in the absence of actinomycin D and activates JNK in a caspase-dependent manner. In contrast, TNF requires actinomycin D for apoptosis and activates JNK and p38 kinase with biphasic kinetics. The first phase is transient, precedes apoptosis, and is caspase-independent, whereas the second phase is coincident with apoptosis and is caspase-dependent. Inhibition of early TNF-induced JNK and p38 kinases using MKK4/MKK6 mutants or the p38 inhibitor SB203580 increases TNF-induced apoptosis, whereas expression of wild type MKK4/MKK6 enhances survival. In contrast, the Mek inhibitor PD098059 has no effect on survival. These results demonstrate that early activation of p38 kinase (but not Mek) are necessary to protect cells from TNF-mediated cytotoxicity. Thus, early stress kinase activation initiated by TNF plays a key role in regulating apoptosis.


Nature Medicine | 2015

Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes

Razvan Cristescu; Jeeyun Lee; Michael Nebozhyn; Kyoung-Mee Kim; Jason C. Ting; Swee Seong Wong; Jiangang Liu; Yong Gang Yue; Jian Wang; Kun Yu; Xiang S. Ye; In-Gu Do; Shawn Liu; Lara Gong; Jake Fu; Jason Gang Jin; Min Gew Choi; Tae Sung Sohn; Joon-Ho Lee; Jae Moon Bae; Seung Tae Kim; Se Hoon Park; Insuk Sohn; Sin-Ho Jung; Patrick Tan; Ronghua Chen; James C. Hardwick; Won Ki Kang; Mark Ayers; Dai Hongyue

Gastric cancer, a leading cause of cancer-related deaths, is a heterogeneous disease. We aim to establish clinically relevant molecular subtypes that would encompass this heterogeneity and provide useful clinical information. We use gene expression data to describe four molecular subtypes linked to distinct patterns of molecular alterations, disease progression and prognosis. The mesenchymal-like type includes diffuse-subtype tumors with the worst prognosis, the tendency to occur at an earlier age and the highest recurrence frequency (63%) of the four subtypes. Microsatellite-unstable tumors are hyper-mutated intestinal-subtype tumors occurring in the antrum; these have the best overall prognosis and the lowest frequency of recurrence (22%) of the four subtypes. The tumor protein 53 (TP53)-active and TP53-inactive types include patients with intermediate prognosis and recurrence rates (with respect to the other two subtypes), with the TP53-active group showing better prognosis. We describe key molecular alterations in each of the four subtypes using targeted sequencing and genome-wide copy number microarrays. We validate these subtypes in independent cohorts in order to provide a consistent and unified framework for further clinical and preclinical translational research.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/β-catenin signaling is activated in human colon tumors

Dong Yan; Marion Wiesmann; Michael Rohan; Vivien W. Chan; Ann B. Jefferson; Lida Guo; Doreen Sakamoto; Roger H. Caothien; John H. Fuller; Christoph Reinhard; Pablo Garcia; Filippo Randazzo; Jaime Escobedo; Wendy J. Fantl; Lewis T. Williams

Genetic studies have identified mutations in key regulators of the Wnt/β-catenin pathway in a variety of cancers, most frequently in colon cancers. However, whether the pathway is activated in clinical cancer samples is not easily determined, and therefore it is useful to find markers that could be surrogates to show activation of the Wnt/β-catenin pathway. Gene expression profiles were analyzed in SW620, a colon cancer cell line in which β-catenin levels are stabilized as a consequence of truncated adenomatous polyposis coli and were compared with profiles of the same cells transfected with antisense oligodeoxynucleotides. Treatment of cells with β-catenin antisense oligodeoxynucleotides resulted in a decrease in the levels of axin2 and human naked cuticle (hnkd) mRNAs. Interestingly, the proteins encoded by both of these mRNAs are known inhibitors of the β-catenin pathway. In 30 human cell lines derived from different origins, axin2 and hnkd were expressed only in human colon cancer cell lines that are known to have activating mutations in the Wnt/β-catenin pathway. Further, levels of both axin2 and hnkd mRNA were also found to be elevated in about 65% of laser microdissected cells from human colon tumors compared with laser microdissected cells of normal morphology from the same patient samples. The increased expression of axin2 and hnkd correlated with truncations in adenomatous polyposis coli in the same patient samples. These results reveal that it is possible to detect activation of a carcinogenic pathway in human cancer samples with specific markers.


Nature Cell Biology | 2001

PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling.

Tian-Qiang Sun; Bingwei Lu; Jia-jia Feng; Christoph Reinhard; Yuh Nung Jan; Wendy J. Fantl; Lewis T. Williams

Wnt signalling regulates β-catenin-dependent developmental processes through the Dishevelled protein (Dsh). Dsh regulates two distinct pathways, one mediated by β-catenin and the other by Jun kinase (JNK). We have purified a Dsh-associated kinase from Drosophila that encodes a homologue of Caenorhabditis elegans PAR-1, a known determinant of polarity during asymmetric cell divisions. Treating cells with Wnt increases endogenous PAR-1 activity coincident with Dsh phosphorylation. PAR-1 potentiates Wnt activation of the β-catenin pathway but blocks the JNK pathway. Suppressing endogenous PAR-1 function inhibits Wnt signalling through β-catenin in mammalian cells, and Xenopus and Drosophila embryos. PAR-1 seems to be a positive regulator of the β-catenin pathway and an inhibitor of the JNK pathway. These findings show that PAR-1, a regulator of polarity, is also a modulator of Wnt–β-catenin signalling, indicating a link between two important developmental pathways.


The EMBO Journal | 1997

Tumor necrosis factor alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2.

Christoph Reinhard; Blanche Shamoon; Venkatakrishna Shyamala; Lewis T. Williams

Tumor necrosis factor α (TNFα) a pro‐inflammatory cytokine is an endogenous mediator of septic shock, inflammation, anti‐viral responses and apoptotic cell death. TNFα elicits its complex biological responses through the individual or cooperative action of two TNF receptors of mol. wt 55 kDa (TNF‐RI) and mol. wt 75 kDa (TNF‐RII). To determine signaling events specific for TNF‐RII we fused the extracellular domain of the mouse CD4 antigen to the intracellular domain of TNF‐RII. Crosslinking of the chimeric receptor using anti‐CD4 antibodies initiates exclusively TNF–RII‐mediated signals. Our findings show that: (i) TNF–RII is able to activate two members of the MAP kinase family: extracellular regulated kinase (ERK) and c–jun N‐terminal kinase (JNK); (ii) TRAF2, a molecule that binds TNF‐RII and associates indirectly with TNF–RI, is sufficient to activate JNK upon overexpression; (iii) dominant‐negative TRAF2 blocks TNFα‐mediated JNK activation and (iv) TRAF2 signals the activation of JNK and NF‐κB through different pathways. Our findings suggest that TNFα‐mediated JNK activation in fibroblasts is independent of the cell death pathway and that TRAF2 occupies a key role in TNF receptor signaling to JNK.


Proceedings of the National Academy of Sciences of the United States of America | 2003

TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation

Quan Lu; Lila Weiqiao Hope; M A Brasch; Christoph Reinhard; Stanley N. Cohen

Down-regulation of mitogenic signaling in mammalian cells relies in part on endosomal trafficking of activated receptors into lysosomes, where the receptors are degraded. These events are mediated by ubiquitination of the endosomal cargo and its consequent sorting into multivesicular bodies that form at the surfaces of late endosomes. Tumor susceptibility gene 101 (tsg101) recently was found to be centrally involved in this process. Here we report that TSG101 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), an early endosomal protein, and that disruption of this interaction impedes endosomal trafficking and endocytosis-mediated degradation of mitogenic receptors. TSG101/HRS interaction occurs between a ubiquitin-binding domain of TSG101 and two distinct proline-rich regions of HRS, and is modulated by a C-terminal TSG101 sequence that resembles a motif targeted in HRS. Mutational perturbation of TSG101/HRS interaction prevented delivery of epidermal growth factor receptor (EGFR) to late endosomes, resulted in the cellular accumulation of ubiquitinated EGFR in early endosomes, and inhibited ligand-induced down-regulation of EGFR. Our results reveal the TSG101 interaction with HRS as a crucial step in endocytic down-regulation of mitogenic signaling and suggest a role for this interaction in linking the functions of early and late endosomes.


Genome Research | 2013

Whole genome sequencing identifies recurrent mutations in hepatocellular carcinoma

Zhengyan Kan; Hancheng Zheng; Xiao Liu; Shuyu Li; Thomas D. Barber; Zhuolin Gong; Huan Gao; Ke Hao; Melinda D. Willard; Jiangchun Xu; Robert Hauptschein; Paul A. Rejto; Julio Fernandez; Guan Wang; Qinghui Zhang; Bo Wang; Ronghua Chen; Jian Wang; Nikki P. Lee; Wei Zhou; Zhao Lin; Zhiyu Peng; Kang Yi; Shengpei Chen; Lin Li; Xiaomei Fan; Jie Yang; Rui Ye; Jia Ju; Kai Wang

Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd.

Dong Yan; John B. Wallingford; Tian-Qiang Sun; April M. Nelson; Chie Sakanaka; Christoph Reinhard; Richard Harland; Wendy J. Fantl; Lewis T. Williams

Genetic studies have identified Drosophila Naked Cuticle (Nkd) as an antagonist of the canonical Wnt/β-catenin signaling pathway, but its mechanism of action remains obscure [Zeng, W., Wharton, K. A., Jr., Mack, J. A., Wang, K., Gadbaw, M., et al. (2000) Nature (London) 403, 789–795]. Here we have cloned a cDNA encoding a mammalian homolog of Drosophila Nkd, mNkd, and demonstrated that mNkd interacts directly with Dishevelled. Dishevelled is an intracellular mediator of both the canonical Wnt pathway and planar cell polarity (PCP) pathway. Activation of the c-Jun-N-terminal kinase has been implicated in the PCP pathway. We showed that mNkd acts in a cell-autonomous manner not only to inhibit the canonical Wnt pathway but also to stimulate c-Jun-N-terminal kinase activity. Expression of mNkd disrupted convergent extension in Xenopus, consistent with a role for mNkd in the PCP pathway. These data suggest that mNkd may act as a switch to direct Dishevelled activity toward the PCP pathway, and away from the canonical Wnt pathway.

Collaboration


Dive into the Christoph Reinhard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaime Escobedo

University of California

View shared research outputs
Top Co-Authors

Avatar

Ronald N. Zuckermann

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Pot

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge