Christoph Völker
Alfred Wegener Institute for Polar and Marine Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Völker.
Antarctic Science | 2004
Dirk Olbers; Daniel Borowski; Christoph Völker; Jörg-Olaf Wolff
The physical elements of the circulation of the Antarctic Circumpolar Current (ACC) are reviewed. A picture of the circulation is sketched by means of recent observations from the WOCE decade. We present and discuss the role of forcing functions (wind stress, surface buoyancy flux) in the dynamical balance of the flow and in the meridional circulation and study their relation to the ACC transport. The physics of form stress at tilted isopycnals and at the ocean bottom are elucidated as central mechanisms in the momentum balance. We explain the failure of the Sverdrup balance in the ACC circulation and highlight the role of geostrophic contours in the balance of vorticity. Emphasis is on the interrelation of the zonal momentum balance and the meridional circulation, the importance of diapycnal mixing and eddy processes. Finally, new model concepts are described: a model of the ACC transport dependence on wind stress and buoyancy flux, based on linear wave theory; and a model of the meridional overturning and the mean density structure of the Southern Ocean, based on zonally averaged dynamics and thermodynamics with eddy parametrization.
Marine Chemistry | 1999
Christoph Völker; Dieter Wolf-Gladrow
The excretion of siderophores and the reduction of organic iron-complexes at the cell surface are common reactions of terrestrial plants, fungi and bacteria in response to low availability of iron. However, there is much less evidence for the use of these strategies by marine phytoplankton. It has been argued that siderophore excretion is inefficient in an aquatic environment due to rapid diffusion. This study examines how diffusion and chemical reactions in the microenvironment of a phytoplankton cell influence the efficiency of both strategies to increase the bioavailability of iron and to reduce iron stress. A numerical model of the cell surroundings is presented that calculates the concentration distribution for different iron species and allows to study the effect of siderophores or surface reductases. It calculates the efficiency of these mechanisms, defined as the quotient between the increase in iron uptake rate and the excretion rate of siderophores or electrons, needed to obtain this increase. The dependence of this efficiency on rates of iron coordination reactions, on diffusivity, and on the kinetics of iron uptake is discussed with the aid of some analytical calculations.
Global Biogeochemical Cycles | 2016
Alessandro Tagliabue; Olivier Aumont; Ros M Death; John P. Dunne; Stephanie Dutkiewicz; Eric D. Galbraith; Kazuhiro Misumi; J. Keith Moore; Andy Ridgwell; Elliot Sherman; Charles A. Stock; Marcello Vichi; Christoph Völker; Andrew Yool
Numerical models of ocean biogeochemistry are relied upon to make projections about the impact of climate change on marine resources and test hypotheses regarding the drivers of past changes in climate and ecosystems. In large areas of the ocean, iron availability regulates the functioning of marine ecosystems and hence the ocean carbon cycle. Accordingly, our ability to quantify the drivers and impacts of fluctuations in ocean ecosystems and carbon cycling in space and time relies on first achieving an appropriate representation of the modern marine iron cycle in models. When the iron distributions from 13 global ocean biogeochemistry models are compared against the latest oceanic sections from the GEOTRACES program, we find that all models struggle to reproduce many aspects of the observed spatial patterns. Models that reflect the emerging evidence for multiple iron sources or subtleties of its internal cycling perform much better in capturing observed features than their simpler contemporaries, particularly in the ocean interior. We show that the substantial uncertainty in the input fluxes of iron results in a very wide range of residence times across models, which has implications for the response of ecosystems and global carbon cycling to perturbations. Given this large uncertainty, iron fertilization experiments based on any single current generation model should be interpreted with caution. Improvements to how such models represent iron scavenging and also biological cycling are needed to raise confidence in their projections of global biogeochemical change in the ocean.
Global Biogeochemical Cycles | 2013
Judith Hauck; Christoph Völker; Tingting Wang; Mario Hoppema; Martin Losch; Dieter Wolf-Gladrow
Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO2. In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO2. In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.
Global Biogeochemical Cycles | 2014
Cécile Guieu; Olivier Aumont; Adina Paytan; Laurent Bopp; Cliff S. Law; N. Mahowald; Eric P. Achterberg; Emilio Marañón; Baris Salihoglu; A. Crise; Thibaut Wagener; Barak Herut; Karine Desboeufs; M. Kanakidou; Nazli Olgun; Francesc Peters; Elvira Pulido-Villena; Antonio Tovar-Sánchez; Christoph Völker
In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (<1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
Global Biogeochemical Cycles | 2005
L. Weber; Christoph Völker; Markus Schartau; Dieter Wolf-Gladrow
By means of numerical modeling, we analyze the cycling of iron between its various physical (dissolved, colloidal, particulate) and chemical (redox state and organic complexation) forms in the upper mixed layer. With our proposed model it is possible to obtain a first quantitative assessment of how this cycling influences iron uptake by phytoplankton and its loss via particle export. The model is forced with observed dust deposition rates, mixed layer depths, and solar radiation at the site of the Bermuda Atlantic Time-series Study (BATS). It contains an objectively optimized ecosystem model which yields results close to the observational data from BATS that has been used for the data-assimilation procedure. It is shown that the mixed layer cycle strongly influences the cycling of iron between its various forms. This is mainly due to the light dependency of photoreductive processes, and to the seasonality of primary production. The daily photochemical cycle is driven mainly by the production of superoxide, and its amplitude depends on the concentration and speciation of dissolved copper. Model results are almost insensitive to the dominant form of dissolved iron within dust deposition, and also to the form of iron that is taken up directly during algal growth. In our model solutions, the role of the colloidal pumping mechanism depends strongly on assumptions on the colloid aggregation and photoreduction rate.
Geophysical Research Letters | 2015
Judith Hauck; Christoph Völker
The Southern Ocean is a key region for global carbon uptake and is characterized by a strong seasonality with the annual CO2 uptake being mediated by biological carbon drawdown in summer. Here we show that the contribution of biology to CO2 uptake will become even more important until 2100. This is the case even if biological production remains unaltered and can be explained by the decreasing buffer capacity of the ocean as its carbon content increases. The same amount of biological carbon drawdown leads to a more than twice as large reduction in CO2(aq) concentration and hence to a larger CO2 gradient between ocean and atmosphere that drives the gas exchange. While the winter uptake south of 44°S changes little, the summer uptake increases largely and is responsible for the annual mean response. The combination of decreasing buffer capacity and strong seasonality of biological carbon drawdown introduces a strong and increasing seasonality in the anthropogenic carbon uptake. Key Points Decrease of buffer capacity leads to stronger summer CO2 uptake in the future Biology will contribute more to future CO2 uptake in Southern Ocean Seasonality affects anthropogenic carbon uptake strongly
Global Biogeochemical Cycles | 2002
Christoph Völker; Douglas W.R. Wallace; Dieter Wolf-Gladrow
The influence of the overturning circulation on the anthropogenic carbonsink in the North Atlantic is investigated with a simple box model.The net air-sea flux of anthropogenic carbon inthe North Atlantic is the result of two opposing fluxes:The first is the uptake caused by the disequilibriumbetween the rapidly rising atmospheric pCO2and the dissolved carbon content in the ocean, depending mainly onthe water exchange rate between mixed layer and interior North Atlantic ocean.Superimposed is a second flux, related to the northwardtransport of heat within the Atlantic basin, that is directed out of theocean, contrary to conventional wisdom. It is caused by a latitudinalgradient in the ratio of seawater alkalinity to totaldissolved inorganic carbon that in turnis related to the cooling and freshening of surface water on its waynorth. This flux depends strongly on the verticalstructure of the upper branch of the overturningcirculation and on the distribution of under- andsuper-saturation of CO2 in Atlantic surface waters.A data-based estimate of anthropogenic carboninventory in the North Atlantic is consistent with a dominance of thedisequilibrium flux over the heat-flux-related outgassing at thepresent time, but, in our model, does not place astrong constraint on the net anthropogenic air-sea flux.Stabilization of the atmospheric pCO2 on a higher levelwill change the relative role of the two opposing fluxes, making the NorthAtlantic a source of anthropogenic carbon to the atmosphere.We discuss implications for the interpretation ofnumerical carbon cycle models.
Paleoceanography | 2013
Christoph Völker; Peter Köhler
We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 μatm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.
Environmental Research Letters | 2016
Judith Hauck; Peter Köhler; Dieter Wolf-Gladrow; Christoph Völker
Carbon dioxide removal (CDR) approaches are efforts to reduce the atmospheric CO2 concentration. Here we use a marine carbon cycle model to investigate the effects of one CDR technique: the open ocean dissolution of the iron-containing mineral olivine. We analyse the maximum CDR potential of an annual dissolution of 3 Pg olivine during the 21st century and focus on the role of the micro-nutrient iron for the biological carbon pump. Distributing the products of olivine dissolution (bicarbonate, silicic acid, iron) uniformly in the global surface ocean has a maximum CDR potential of 0.57 gC/g-olivine mainly due to the alkalinisation of the ocean, with a significant contribution from the fertilisation of phytoplankton with silicic acid and iron. The part of the CDR caused by ocean fertilisation is not permanent, while the CO2 sequestered by alkalinisation would be stored in the ocean as long as alkalinity is not removed from the system. For high CO2 emission scenarios the CDR potential due to the alkalinity input becomes more efficient over time with increasing ocean acidification. The alkalinity-induced CDR potential scales linearly with the amount of olivine, while the iron-induced CDR saturates at 113 PgC per century (on average ~1.1 PgC yr−1) for an iron input rate of 2.3 Tg Fe yr−1 (1% of the iron contained in 3 Pg olivine). The additional iron-related CO2 uptake occurs in the Southern Ocean and in the iron-limited regions of the Pacific. Effects of this approach on surface ocean pH are small (< 0.01).