Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christoph Vorburger is active.

Publication


Featured researches published by Christoph Vorburger.


Genome Research | 2012

Genomic basis of endosymbiont-conferred protection against an insect parasitoid

Allison K. Hansen; Christoph Vorburger; Nancy A. Moran

Bacterial endosymbionts exert a variety of beneficial effects on insect hosts. In pea aphids (Acyrthosiphon pisum), several inherited endosymbiont species protect their hosts against parasitoid wasps, which are major natural enemies. However, strains of these symbiont species vary in their ability to confer protection against parasitoids, with some conferring almost complete protection and others conferring almost none. In this study, two strains of the endosymbiont Regiella insecticola (R. insecticola 5.15 and R. insecticola LSR1) were found to differ in ability to protect pea aphids attacked by the parasitoid Aphidius ervi. Parasitism trials reveal that R. insecticola 5.15, but not R. insecticola LSR1, significantly reduced parasitoid success and increased aphid survivorship. To address the potential genetic basis of protection conferred by R. insecticola 5.15 we sequenced the genome of this symbiont strain, and then compared its gene repertoire with that of the already sequenced nonprotective strain R. insecticola LSR1. We identified striking differences in gene sets related to eukaryote pathogenicity. The protective strain R. insecticola 5.15 encoded five categories of pathogenicity factors that were missing or inactivated in R. insecticola LSR1. These included genes encoding the O-antigen biosynthetic pathway, an intact Type 1 Secretion System and its secreted RTX toxins, an intact SPI-1 Type 3 Secretion System and its effectors, hemin transport, and the two-component system PhoPQ. These five pathogenicity factors and translocation systems are hypothesized to collectively play key roles in the endosymbionts virulence against parasitoids, resulting in aphid protection. Mechanisms through which these factors may target parasitoids are discussed.


Insect Science | 2014

The evolutionary ecology of symbiont‐conferred resistance to parasitoids in aphids

Christoph Vorburger

Aphids may harbor a wide variety of facultative bacterial endosymbionts. These symbionts are transmitted maternally with high fidelity and they show horizontal transmission as well, albeit at rates too low to enable infectious spread. Such symbionts need to provide a net fitness benefit to their hosts to persist and spread. Several symbionts have achieved this by evolving the ability to protect their hosts against parasitoids. Reviewing empirical work and some models, I explore the evolutionary ecology of symbiont‐conferred resistance to parasitoids in order to understand how defensive symbiont frequencies are maintained at the intermediate levels observed in aphid populations. I further show that defensive symbionts alter the reciprocal selection between aphids and parasitoids by augmenting the heritable variation for resistance, by increasing the genetic specificity of the host–parasitoid interaction, and by inducing environment‐dependent trade‐offs. These effects are conducive to very dynamic, symbiont‐mediated coevolution that is driven by frequency‐dependent selection. Finally I argue that defensive symbionts represent a problem for biological control of pest aphids, and I propose to mitigate this problem by exploiting the parasitoids’ demonstrated ability to rapidly evolve counteradaptations to symbiont‐conferred resistance.


Ecological Entomology | 2015

Symbiont-conferred protection against Hymenopteran parasitoids in aphids: how general is it?

Luis Cayetano; Christoph Vorburger

1. Hosts are often targeted by multiple species of parasites, leading to a confluence of selective pressures on them. In response, hosts may either evolve defences that act very generally, or specific defences against particular parasites. Aphids are attacked by multiple species of endoparasitoid wasps, and there is clear evidence that heritable endosymbionts can confer resistance against some of these wasps. Less clear is how symbiont‐conferred resistance in a single host acts against multiple parasitoid species.


Evolution | 2014

EXPERIMENTAL EVOLUTION OF PARASITOID INFECTIVITY ON SYMBIONT‐PROTECTED HOSTS LEADS TO THE EMERGENCE OF GENOTYPE SPECIFICITY

Romain Rouchet; Christoph Vorburger

Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.


The American Naturalist | 2012

Modeling the ecology of symbiont-mediated protection against parasites.

Marek Kwiatkowski; Christoph Vorburger

There is increasing evidence that many maternally transmitted symbionts protect their hosts against parasites, thus ensuring their own persistence. Despite the protection they provide, such symbionts are typically found in only a fraction of the host population. This suggests that symbiont-conferred resistance is costly or that the maternal inheritance of symbionts is not perfect. To investigate these hypotheses and other properties of this complex ecological system, we develop a mathematical model based on the example of bacterial endosymbionts that protect aphids against parasitoid wasps. Simulations show that in the absence of more complex effects, a very fine balance between the costs of harboring symbionts and the strength of protection they provide is required to maintain coexistence of protected and unprotected hosts. These constraints are significantly relaxed and coexistence becomes a common outcome if deployment of symbiont-provided defenses upon a parasite attack entails an additional (induced) cost. Transmission rates of symbionts also affect coexistence, which is more frequently observed under high (but not perfect) fidelity of vertical transfer and low rates of horizontal transfer. Finally, we show that the prevalence of defensive symbionts has a strong influence on the population dynamics of hosts and parasites: population sizes are stable if and only if protected hosts dominate.


Ecology and Evolution | 2013

Comparing constitutive and induced costs of symbiont‐conferred resistance to parasitoids in aphids

Christoph Vorburger; Pravin Ganesanandamoorthy; Marek Kwiatkowski

Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by ‘helpers’ such as bacterial endosymbionts. We investigated the costs of symbiont-conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont-conferred resistance. On the contrary, symbiont-protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids.


PLOS Computational Biology | 2012

On genetic specificity in symbiont-mediated host-parasite coevolution.

Marek Kwiatkowski; Jan Engelstädter; Christoph Vorburger

Existing theory of host-parasite interactions has identified the genetic specificity of interaction as a key variable affecting the outcome of coevolution. The Matching Alleles (MA) and Gene For Gene (GFG) models have been extensively studied as the canonical examples of specific and non-specific interaction. The generality of these models has recently been challenged by uncovering real-world host-parasite systems exhibiting specificity patterns that fit neither MA nor GFG, and by the discovery of symbiotic bacteria protecting insect hosts against parasites. In the present paper we address both challenges, simulating a large number of non-canonical models of host-parasite interactions that explicitly incorporate symbiont-based host resistance. To assess the genetic specialisation in these hybrid models, we develop a quantitative index of specificity applicable to any coevolutionary model based on a fitness matrix. We find qualitative and quantitative effects of host-parasite and symbiont-parasite specificities on genotype frequency dynamics, allele survival, and mean host and parasite fitnesses.


Molecular Ecology | 2011

Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae

Christoph Sandrock; Jabraeil Razmjou; Christoph Vorburger

Aphid species may exhibit different reproductive modes ranging from cyclical to obligate parthenogenesis. The distribution of life cycle variation in aphids is generally determined by ecological forces, mainly climate, because only sexually produced diapausing eggs can survive harsh winters or periods of absence of suitable host plants. Aphids are thus interesting models to investigate intrinsic and environmental factors shaping the competition among sexual and asexual lineages. We conducted a Europe‐wide sampling of black bean aphids, Aphis fabae, and combined population genetic analyses based on microsatellite data with an experimental determination of life cycle strategies. Aphids were collected from broad beans (Vicia faba) as well as some Chenopodiaceae, but we detected no genetic differentiation between aphids from different host plants. Consistent with model predictions, life cycle variation was related to climate, with aphids from areas with cold winters investing more in sexual reproduction than aphids from areas with mild winters. Accordingly, only populations from mild areas exhibited a clear genetic signature of clonal reproduction. These differences arise despite substantial gene flow over large distances, which was evident from a very low geographic population structure and a lack of isolation‐by‐distance among 18 sites across distances of more than 1000 km. There was virtually no genetic differentiation between aphids with different reproductive modes, suggesting that new asexual lineages are formed continuously. Indeed, a surprising number of A. fabae genotypes even from colder climates produced some parthenogenetic offspring under simulated winter conditions. From this we predict that a shift to predominantly asexual reproduction could take place rapidly under climate warming.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Cheaper is not always worse: strongly protective isolates of a defensive symbiont are less costly to the aphid host

Luis Cayetano; Lukas Rothacher; Jean-Christophe Simon; Christoph Vorburger

Defences against parasites are typically associated with costs to the host that contribute to the maintenance of variation in resistance. This also applies to the defence provided by the facultative bacterial endosymbiont Hamiltonella defensa, which protects its aphid hosts against parasitoid wasps while imposing life-history costs. To investigate the cost–benefit relationship within protected hosts, we introduced multiple isolates of H. defensa to the same genetic backgrounds of black bean aphids, Aphis fabae, and we quantified the protection against their parasitoid Lysiphlebus fabarum as well as the costs to the host (reduced lifespan and reproduction) in the absence of parasitoids. Surprisingly, we observed the opposite of a trade-off. Strongly protective isolates of H. defensa reduced lifespan and lifetime reproduction of unparasitized aphids to a lesser extent than weakly protective isolates. This finding has important implications for the evolution of defensive symbiosis and highlights the need for a better understanding of how strain variation in protective symbionts is maintained.


Evolution | 2011

Contagious parthenogenesis, automixis, and a sex determination meltdown

Jan Engelstädter; Christoph Sandrock; Christoph Vorburger

Because of the twofold cost of sex, genes conferring asexual reproduction are expected to spread rapidly in sexual populations. However, in reality this simple prediction is often confounded by several complications observed in natural systems. Motivated by recent findings in the Cape honey bee and in the parasitoid wasp Lysiphlebus fabarum, we explore through mathematical models the spread of a recessive, parthenogenesis inducing allele in a haplodiploid population. The focus of these models is on the intricate interactions between the mode of parthenogenesis induction through automixis and complementary sex determination (CSD) systems. These interactions may result in asexual production of diploid male offspring and the spread of the parthenogenesis‐inducing allele through these males. We demonstrate that if parthenogenetic females produce a substantial proportion of male offspring, this may prevent the parthenogenesis‐inducing allele from spreading. However, this effect is weakened if these diploid males are at least partially fertile. We also predict a degradation of multilocus CSD systems during the spread of parthenogenesis, following which only a single polymorphic CSD locus is maintained. Finally, based on empirical parameter estimates from L. fabarum we predict that male production in parthenogens is unlikely to prevent the eventual loss of sexual reproduction in this system.

Collaboration


Dive into the Christoph Vorburger's collaboration.

Top Co-Authors

Avatar

Marek Kwiatkowski

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Luis Cayetano

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandre Gouskov

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas Rothacher

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nicola Rhyner

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Romain Rouchet

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge