Christoph W. Turck
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph W. Turck.
Cell | 1992
Andrew C. Chan; Makio Iwashima; Christoph W. Turck; Arthur Weiss
Abstract Protein-tyrosine kinases (PTKs) play an integral role in T cell activation. Stimulation of the T cell antigen receptor (TCR) results in tyrosine phosphorylation of a number of cellular substrates. One of these is the TCR ζ chain, which can mediate the transduction of extracellular stimuli into cellular effector functions. We have recently identified a 70 kd tyrosine phosphoprotein (ZAP-70) that associates with ζ and undergoes tyrosine phosphorylation following TCR stimulation. Here we report the isolation of a cDNA clone encoding ZAP-70. ZAP-70 represents a novel PTK and is expressed in T and natural killer cells. Moreover, tyrosine phosphorylation and association of ZAP-70 with ζ require the presence of src family PTKs and provide a potential mechanism by which the src family PTKs and ZAP-70 may interact to mediate TCR signal transduction.
Cell | 1992
Wendy J. Fantl; Jaime Escobedo; George A. Martin; Christoph W. Turck; Mercedita del Rosario; Frank McCormick; Lewis T. Williams
The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.
Immunity | 1998
Chong Fu; Christoph W. Turck; Tomohiro Kurosaki; Andrew C. Chan
Linker or adapter proteins provide mechanisms by which receptors can amplify and regulate downstream effector proteins. We describe here the identification of a novel B cell linker protein, termed BLNK, that interfaces the B cell receptor-associated Syk tyrosine kinase with PLCgamma, the Vav guanine nucleotide exchange factor, and the Grb2 and Nck adapter proteins. Tyrosine phosphorylation of BLNK by Syk provides docking sites for these SH2-containing effector molecules that, in turn, permits the phosphorylation and/or activation of their respective signaling pathways. Hence, BLNK represents a central linker protein that bridges the B cell receptor-associated kinases with a multitude of signaling pathways and may regulate the biologic outcomes of B cell function and development.
Molecular and Cellular Biology | 2000
Vadim Markovtsov; Julia Nikolic; Joseph A. Goldman; Christoph W. Turck; Min-Yuan Chou; Douglas L. Black
ABSTRACT Splicing of the c-src N1 exon in neuronal cells depends in part on an intronic cluster of RNA regulatory elements called the downstream control sequence (DCS). Using site-specific cross-linking, RNA gel shift, and DCS RNA affinity chromatography assays, we characterized the binding of several proteins to specific sites along the DCS RNA. Heterogeneous nuclear ribonucleoprotein (hnRNP) H, polypyrimidine tract binding protein (PTB), and KH-type splicing-regulatory protein (KSRP) each bind to distinct elements within this sequence. We also identified a new 60-kDa tissue-specific protein that binds to the CUCUCU splicing repressor element of the DCS RNA. This protein was purified, partially sequenced, and cloned. The new protein (neurally enriched homolog of PTB [nPTB]) is highly homologous to PTB. Unlike PTB, nPTB is enriched in the brain and in some neural cell lines. Although similar in sequence, nPTB and PTB show significant differences in their properties. nPTB binds more stably to the DCS RNA than PTB does but is a weaker repressor of splicing in vitro. nPTB also greatly enhances the binding of two other proteins, hnRNP H and KSRP, to the DCS RNA. These experiments identify specific cooperative interactions between the proteins that assemble onto an intricate splicing-regulatory sequence and show how this hnRNP assembly is altered in different cell types by incorporating different but highly related proteins.
Immunity | 1996
Hyunsun Park; Matthew I. Wahl; Daniel E. H. Afar; Christoph W. Turck; David J. Rawlings; Christina Tam; Andrew M. Scharenberg; Jean-Pierre Kinet; Owen N. Witte
Brutons tyrosine kinase (Btk) plays a crucial role in B cell development. Overexpression of Btk with a Src family kinase increases tyrosine phosphorylation and catalytic activity of Btk. This occurs by transphosphorylation at Y551 in the Btk catalytic domain and the enhancement of Btk autophosphorylation at a second site. A gain-of-function mutant called Btk* containing E41 to K change within the pleckstrin homology domain induces fibroblast transformation. Btk* enhances the transphosphorylation of Y551 by endogenous Src family tyrosine kinases and autophosphorylation at the second site. We mapped the major Btk autophosphorylation site to Y223 within the SH3 domain. Mutation of Y223 to F blocks Btk autophosphorylation and dramatically potentiates the transforming activity of Btk* in fibroblasts. The location of Y223 in a potential ligand-binding pocket suggests that autophosphorylation regulates SH3-mediated signaling by Btk.
Molecular and Cellular Biology | 1999
Min-Yuan Chou; Nanette Rooke; Christoph W. Turck; Douglas L. Black
ABSTRACT The regulation of the c-src N1 exon is mediated by an intronic splicing enhancer downstream of the N1 5′ splice site. Previous experiments showed that a set of proteins assembles onto the most conserved core of this enhancer sequence specifically in neuronal WERI-1 cell extracts. The most prominent components of this enhancer complex are the proteins hnRNP F, KSRP, and an unidentified protein of 58 kDa (p58). This p58 protein was purified from the WERI-1 cell nuclear extract by ammonium sulfate precipitation, Mono Q chromatography, and immunoprecipitation with anti-Sm antibody Y12. Peptide sequence analysis of purified p58 protein identified it as hnRNP H. Immunoprecipitation of hnRNP H cross-linked to the N1 enhancer RNA, as well as gel mobility shift analysis of the enhancer complex in the presence of hnRNP H-specific antibodies, confirmed that hnRNP H is a protein component of the splicing enhancer complex. Immunoprecipitation of splicing intermediates from in vitro splicing reactions with anti-hnRNP H antibody indicated that hnRNP H remains bound to the src pre-mRNA after the assembly of spliceosome. Partial immunodepletion of hnRNP H from the nuclear extract partially inactivated the splicing of the N1 exon in vitro. This inhibition of splicing can be restored by the addition of recombinant hnRNP H, indicating that hnRNP H is an important factor for N1 splicing. Finally, in vitro binding assays demonstrate that hnRNP H can interact with the related protein hnRNP F, suggesting that hnRNPs H and F may exist as a heterodimer in a single enhancer complex. These two proteins presumably cooperate with each other and with other enhancer complex proteins to direct splicing to the N1 exon upstream.
PLOS ONE | 2010
Enrico Domenici; David R Wille; Federica Tozzi; Inga Prokopenko; Sam Miller; Astrid McKeown; Claire Brittain; Dan Rujescu; Ina Giegling; Christoph W. Turck; Florian Holsboer; Edward T. Bullmore; Lefkos T. Middleton; Emilio Merlo-Pich; Robert Alexander; Pierandrea Muglia
Despite significant research efforts aimed at understanding the neurobiological underpinnings of psychiatric disorders, the diagnosis and the evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms. Therefore, biological markers which could improve the current classification of psychiatry disorders, and in perspective stratify patients on a biological basis into more homogeneous clinically distinct subgroups, are highly needed. In order to identify novel candidate biological markers for major depression and schizophrenia, we have applied a focused proteomic approach using plasma samples from a large case-control collection. Patients were diagnosed according to DSM criteria using structured interviews and a number of additional clinical variables and demographic information were assessed. Plasma samples from 245 depressed patients, 229 schizophrenic patients and 254 controls were submitted to multi analyte profiling allowing the evaluation of up to 79 proteins, including a series of cytokines, chemokines and neurotrophins previously suggested to be involved in the pathophysiology of depression and schizophrenia. Univariate data analysis showed more significant p-values than would be expected by chance and highlighted several proteins belonging to pathways or mechanisms previously suspected to be involved in the pathophysiology of major depression or schizophrenia, such as insulin and MMP-9 for depression, and BDNF, EGF and a number of chemokines for schizophrenia. Multivariate analysis was carried out to improve the differentiation of cases from controls and identify the most informative panel of markers. The results illustrate the potential of plasma biomarker profiling for psychiatric disorders, when conducted in large collections. The study highlighted a set of analytes as candidate biomarker signatures for depression and schizophrenia, warranting further investigation in independent collections.
The Journal of Neuroscience | 2005
Simone A. Krömer; Melanie S. Keßler; Dale Milfay; Isabel Birg; Mirjam Bunck; Ludwig Czibere; Markus Panhuysen; Benno Pütz; Jan M. Deussing; Florian Holsboer; Rainer Landgraf; Christoph W. Turck
For >15 generations, CD1 mice have been selectively and bidirectionally bred for either high-anxiety-related behavior (HAB-M) or low-anxiety-related behavior (LAB-M) on the elevated plus-maze. Independent of gender, HAB-M were more anxious than LAB-M animals in a variety of additional tests, including those reflecting risk assessment behaviors and ultrasound vocalization, with unselected CD1 “normal” control (NAB-M) and cross-mated (CM-M) mice displaying intermediate behavioral scores in most cases. Furthermore, in both the forced-swim and tail-suspension tests, LAB-M animals showed lower scores of immobility than did HAB-M and NAB-M animals, indicative of a reduced depression-like behavior. Using proteomic and microarray analyses, glyoxalase-I was identified as a protein marker, which is consistently expressed to a higher extent in LAB-M than in HAB-M mice in several brain areas. The same phenotype-dependent difference was found in red blood cells with NAB-M and CM-M animals showing intermediate expression profiles of glyoxalase-I. Additional studies will examine whether glyoxalase-I has an impact beyond that of a biomarker to predict the genetic predisposition to anxiety- and depression-like behavior.
Molecular and Cellular Biology | 1991
Jaime Escobedo; D R Kaplan; W M Kavanaugh; Christoph W. Turck; Lewis T. Williams
Platelet-derived growth factor (PDGF) stimulates autophosphorylation of the PDGF receptor and association of the receptor with several cytoplasmic molecules, including phosphatidylinositol-3 kinase (PI3 kinase). In this study we examined the association of PI3 kinase with immunoprecipitated autophosphorylated PDGF receptor in vitro. The PI3 kinase from cell lysates bound to the wild-type receptor but not to a mutant receptor that had a deletion of the kinase insert region. A protein of an apparent size of 85 kDa bound to the receptor, consistent with previous observations that a protein of this size is associated with PI3 kinase activity. In addition, 110- and 74-kDa proteins bound to the phosphorylated receptor. Dephosphorylated receptors lost the ability to bind PI3 kinase activity as well as the 85-kDa protein. A 20-amino-acid peptide composed of a sequence in the kinase insert region that included one of the autophosphorylation sites of the receptor (tyrosine 719) as well as a nearby tyrosine (Y708) blocked the binding of PI3 kinase to the receptor, but only when the peptide was phosphorylated on tyrosine residues. A scrambled version of the peptide did not block PI3 kinase binding to the receptor even when it was phosphorylated on tyrosine. These tyrosine-phosphorylated peptides did not block binding of phospholipase C-gamma or GTPase-activating protein to the receptor. In separate experiments (receptor blots), soluble radiolabeled receptor bound specifically to an 85-kDa protein present in sodium dodecyl sulfate-polyacrylamide gel electrophoresis-fractionated 3T3 cell lysates that were transferred to nitrocellulose paper. The binding was blocked by the same tyrosine-phosphorylated peptides that prevented binding of PI3 kinase activity to immobilized receptors. These findings show that the PDGF receptor binds directly to an 85-kDa protein and to a PI3 kinase activity through specific sequences in the kinase insert region. The association of a 110-kDa protein with the receptor also involve these sequences, suggesting that this protein may be a subunit of the PI3 kinase. Phosphotyrosine is an essential structure required for the interactions of these proteins with the PDGF receptor.
Molecular and Cellular Biology | 1995
B L Eide; Christoph W. Turck; Jaime Escobedo
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.