Christoph Weniger
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christoph Weniger.
Physical Review D | 2013
James M. Cline; Pat Scott; Kimmo Kainulainen; Christoph Weniger
One of the simplest models of dark matter is where a scalar singlet field S comprises some or all of the dark matter and interacts with the standard model through an vertical bar H vertical bar S-2(2) coupling to the Higgs boson. We update the present limits on the model from LHC searches for invisible Higgs decays, the thermal relic density of S, and dark matter searches via indirect and direct detection. We point out that the currently allowed parameter space is on the verge of being significantly reduced with the next generation of experiments. We discuss the impact of such constraints on possible applications of scalar singlet dark matter, including a strong electroweak phase transition, and the question of vacuum stability of the Higgs potential at high scales.
Journal of Cosmology and Astroparticle Physics | 2012
Torsten Bringmann; Xiaoyuan Huang; Alejandro Ibarra; Stefan Vogl; Christoph Weniger
A commonly encountered obstacle in indirect searches for galactic dark matter is how to disentangle possible signals from astrophysical backgrounds. Given that such signals are most likely subdominant, the search for pronounced spectral features plays a key role for indirect detection experiments; monochromatic gamma-ray lines or similar features related to internal bremsstrahlung, in particular, provide smoking gun signatures. We perform a dedicated search for the latter in the data taken by the Fermi gamma-ray space telescope during its first 43 months. To this end, we use a new adaptive procedure to select optimal target regions that takes into account both standard and contracted dark matter profiles. The behaviour of our statistical method is tested by a subsampling analysis of the full sky data and found to reproduce the theoretical expectations very well. The limits on the dark matter annihilation cross-section that we derive are stronger than what can be obtained from the observation of dwarf galaxies and, at least for the model considered here, collider searches. While these limits are still not quite strong enough to probe annihilation rates expected for thermally produced dark matter, future prospects to do so are very good. In fact, we already find a weak indication, with a significance of 3.1σ (4.3σ) when (not) taking into account the look-elsewhere effect, for an internal bremsstrahlung-like signal that would correspond to a dark matter mass of ~150 GeV; the same signal is also well fitted by a gamma-ray line at around 130 GeV. Although this would be a fascinating possibility, we caution that a much more dedicated analysis and additional data will be necessary to rule out or confirm this option.
Journal of Cosmology and Astroparticle Physics | 2015
Francesca Calore; Ilias Cholis; Christoph Weniger
The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of dierent phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the rst comprehensive study of model systematics coming from the Galactic diuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2 < jbj < 20 and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10:0 (95% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that aect
Physical Review Letters | 2016
Richard Bartels; Suraj Krishnamurthy; Christoph Weniger
Using γ-ray data from the Fermi Large Area Telescope, various groups have identified a clear excess emission in the Inner Galaxy, at energies around a few GeV. This excess resembles remarkably well a signal from dark-matter annihilation. One of the most compelling astrophysical interpretations is that the excess is caused by the combined effect of a previously undetected population of dim γ-ray sources. Because of their spectral similarity, the best candidates are millisecond pulsars. Here, we search for this hypothetical source population, using a novel approach based on wavelet decomposition of the γ-ray sky and the statistics of Gaussian random fields. Using almost seven years of Fermi-LAT data, we detect a clustering of photons as predicted for the hypothetical population of millisecond pulsar, with a statistical significance of 10.0σ. For plausible values of the luminosity function, this population explains 100% of the observed excess emission. We argue that other extragalactic or Galactic sources, a mismodeling of Galactic diffuse emission, or the thick-disk population of pulsars are unlikely to account for this observation.
Physical Review D | 2015
Francesca Calore; Ilias Cholis; Christopher McCabe; Christoph Weniger
Several groups have identified an extended excess of gamma rays over the modeled foreground and background emissions towards the Galactic center (GC) based on observations with the Fermi Large Area Telescope. This excess emission is compatible in morphology and spectrum with a telltale sign from dark matter (DM) annihilation. Here, we present a critical reassessment of DM interpretations of the GC signal in light of the foreground and background uncertainties that some of us recently outlaid in Calore et al. (2014). We find that a much larger number of DM models fits the gamma-ray data than previously noted. In particular: (1) In the case of DM annihilation into (b) over barb, we find that even large DM masses up to m(chi) similar or equal to 74 GeV are allowed at p-value > 0.05. (2) Surprisingly, annihilation into nonrelativistic hh gives a good fit to the data. (3) The inverse Compton emission from mu(+)mu(-) with m(chi) similar to 60-70 GeV can also account for the excess at higher latitudes, vertical bar b vertical bar > 2 degrees, both in its spectrum and morphology. We also present novel constraints on a large number of mixed annihilation channels, including cascade annihilation involving hidden sector mediators. Finally, we show that the current limits from dwarf spheroidal observations are not in tension with a DM interpretation when uncertainties on the DM halo profile are accounted for.
Physics of the Dark Universe | 2012
Torsten Bringmann; Christoph Weniger
Abstract Weakly interacting massive particles (WIMPs) remain a prime candidate for the cosmological dark matter (DM), even in the absence of current collider signals that would unambiguously point to new physics below the TeV scale. The self-annihilation of these particles in astronomical targets may leave observable imprints in cosmic rays of various kinds. In this review, we focus on gamma rays which we argue to play a pronounced role among the various possible messengers. We discuss the most promising spectral and spatial signatures to look for, give an update on the current state of gamma-ray searches for DM and an outlook concerning future prospects. We also assess in some detail the implications of a potential signal identification for particle DM models as well as for our understanding of structure formation. Special emphasis is put on the possible evidence for a 130 GeV line-like signal that we recently identified in the data of the Fermi gamma-ray space telescope.
Physical Review Letters | 2013
Lars Bergström; Torsten Bringmann; Ilias Cholis; Dan Hooper; Christoph Weniger
The Alpha Magnetic Spectrometer experiment onboard the International Space Station has recently provided cosmic ray electron and positron data with unprecedented precision in the range from 0.5 to 350 GeV. The observed rise in the positron fraction at energies above 10 GeV remains unexplained, with proposed solutions ranging from local pulsars to TeV-scale dark matter. Here, we make use of this high quality data to place stringent limits on dark matter with masses below ~300 GeV, annihilating or decaying to leptonic final states, essentially independent of the origin of this rise. We significantly improve on existing constraints, in some cases by up to 2 orders of magnitude.
Journal of Cosmology and Astroparticle Physics | 2010
Chiara Arina; Thomas Hambye; Alejandro Ibarra; Christoph Weniger
Scenarios with hidden, spontaneously broken, non-abelian gauge groups contain a natural dark matter candidate, the hidden vector, whose longevity is due to an accidental custodial symmetry in the renormalizable Lagrangian. Nevertheless, non-renormalizable dimension six operators break the custodial symmetry and induce the decay of the dark matter particle at cosmological times. We discuss in this paper the cosmic ray signatures of this scenario and we show that the decay of hidden vector dark matter particles generically produce an intense gamma ray line which could be observed by the Fermi-LAT experiment, if the scale of custodial symmetry breaking is close to the Grand Unification scale. This gamma line proceeds directly from a tree level dark matter 2-body decay in association with a Higgs boson. Within this model we also perform a determination of the relic density constraints taking into account the dark matter annihilation processes with one dark matter particle in the final state. The corresponding direct detection rates can be easily of order the current experimental sensitivities.
Journal of Cosmology and Astroparticle Physics | 2010
Alejandro Ibarra; David Tran; Christoph Weniger
A series of experiments measuring high-energy cosmic rays have recently reported strong indications for the existence of an excess of high-energy electrons and positrons. If interpreted in terms of the decay of dark matter particles, the PAMELA measurements of the positron fraction and the Fermi LAT measurements of the total electron-plus-positron flux restrict the possible decaying dark matter scenarios to a few cases. Analyzing different decay channels in a model-independent manner, and adopting a conventional diffusive reacceleration model for the background fluxes of electrons and positrons, we identify some promising scenarios of dark matter decay and calculate the predictions for the diffuse extragalactic gamma-ray flux, including the contributions from inverse Compton scattering with the interstellar radiation field.
Journal of Cosmology and Astroparticle Physics | 2015
Ilias Cholis; Carmelo Evoli; Francesca Calore; Tim Linden; Christoph Weniger; Dan Hooper
It has been proposed that a recent outburst of cosmic-ray electrons could account for the excess of GeV-scale gamma rays observed from the region surrounding the Galactic Center. After studying this possibility in some detail, we identify scenarios in which a series of leptonic cosmic-ray outbursts could plausibly generate the observed excess. The morphology of the emission observed outside of