Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe D'Hulst is active.

Publication


Featured researches published by Christophe D'Hulst.


The Plant Cell | 2009

Starch Granule Initiation in Arabidopsis Requires the Presence of Either Class IV or Class III Starch Synthases

Nicolas Szydlowski; Paula Ragel; Sandy Raynaud; M. Mercedes Lucas; Isaac Roldán; Manuel Montero; Francisco José Muñoz; Miroslav Ovečka; Abdellatif Bahaji; Véronique Planchot; Javier Pozueta-Romero; Christophe D'Hulst; Ángel Mérida

The mechanisms underlying starch granule initiation remain unknown. We have recently reported that mutation of soluble starch synthase IV (SSIV) in Arabidopsis thaliana results in restriction of the number of starch granules to a single, large, particle per plastid, thereby defining an important component of the starch priming machinery. In this work, we provide further evidence for the function of SSIV in the priming process of starch granule formation and show that SSIV is necessary and sufficient to establish the correct number of starch granules observed in wild-type chloroplasts. The role of SSIV in granule seeding can be replaced, in part, by the phylogenetically related SSIII. Indeed, the simultaneous elimination of both proteins prevents Arabidopsis from synthesizing starch, thus demonstrating that other starch synthases cannot support starch synthesis despite remaining enzymatically active. Herein, we describe the substrate specificity and kinetic properties of SSIV and its subchloroplastic localization in specific regions associated with the edges of starch granules. The data presented in this work point to a complex mechanism for starch granule formation and to the different abilities of SSIV and SSIII to support this process in Arabidopsis leaves.


Plant Physiology | 2005

Mutants of Arabidopsis Lacking a Chloroplastic Isoamylase Accumulate Phytoglycogen and an Abnormal Form of Amylopectin

Fabrice Wattebled; Ying Dong; Sylvain Dumez; David Delvallé; Véronique Planchot; Pierre Berbezy; Darshna Vyas; Paul Colonna; Manash Chatterjee; Steven G. Ball; Christophe D'Hulst

Mutant lines defective for each of the four starch debranching enzyme (DBE) genes (AtISA1, AtISA2, AtISA3, and AtPU1) detected in the nuclear genome of Arabidopsis (Arabidopsis thaliana) were produced and analyzed. Our results indicate that both AtISA1 and AtISA2 are required for the production of a functional isoamylase-type of DBE named Iso1, the major isoamylase activity found in leaves. The absence of Iso1 leads to an 80% decrease in the starch content in both lines and to the accumulation of water-soluble polysaccharides whose structure is similar to glycogen. In addition, the residual amylopectin structure in the corresponding mutant lines displays a strong modification when compared to the wild type, suggesting a direct, rather than an indirect, function of Iso1 during the synthesis of amylopectin. Mutant lines carrying a defect in AtISA3 display a strong starch-excess phenotype at the end of both the light and the dark phases accompanied by a small modification of the amylopectin structure. This result suggests that this isoamylase-type of DBE plays a major role during starch mobilization. The analysis of the Atpu1 single-mutant lines did not lead to a distinctive phenotype. However, Atisa2/Atpu1 double-mutant lines display a 92% decrease in starch content. This suggests that the function of pullulanase partly overlaps that of Iso1, although its implication remains negligible when Iso1 is present within the cell.


Journal of Bacteriology | 2001

Starchless Mutants of Chlamydomonas reinhardtii Lack the Small Subunit of a Heterotetrameric ADP-Glucose Pyrophosphorylase

Christophe Zabawinski; Nathalie Van den Koornhuyse; Christophe D'Hulst; Ralf Schlichting; Christoph Giersch; Brigitte Delrue; Jean-Marie Lacroix; Jack Preiss; Steven G. Ball

ADP-glucose synthesis through ADP-glucose pyrophosphorylase defines the major rate-controlling step of storage polysaccharide synthesis in both bacteria and plants. We have isolated mutant strains defective in the STA6 locus of the monocellular green alga Chlamydomonas reinhardtii that fail to accumulate starch and lack ADP-glucose pyrophosphorylase activity. We show that this locus encodes a 514-amino-acid polypeptide corresponding to a mature 50-kDa protein with homology to vascular plant ADP-glucose pyrophosphorylase small-subunit sequences. This gene segregates independently from the previously characterized STA1 locus that encodes the large 53-kDa subunit of the same heterotetramer enzyme. Because STA1 locus mutants have retained an AGPase but exhibit lower sensitivity to 3-phosphoglyceric acid activation, we suggest that the small and large subunits of the enzyme define, respectively, the catalytic and regulatory subunits of AGPase in unicellular green algae. We provide preliminary evidence that both the small-subunit mRNA abundance and enzyme activity, and therefore also starch metabolism, may be controlled by the circadian clock.


Plant Physiology | 2006

Circadian Clock Regulation of Starch Metabolism Establishes GBSSI as a Major Contributor to Amylopectin Synthesis in Chlamydomonas reinhardtii

Jean-Philippe Ral; Christophe Colleoni; Fabrice Wattebled; David Dauvillée; Clément Nempont; Philippe Deschamps; Zhongyi Li; Matthew K. Morell; Ravindra Chibbar; Saul Purton; Christophe D'Hulst; Steven G. Ball

Chlamydomonas reinhardtii displays a diurnal rhythm of starch content that peaks in the middle of the night phase if the algae are provided with acetate and CO2 as a carbon source. We show that this rhythm is controlled by the circadian clock and is tightly correlated to ADP-glucose pyrophosphorylase activity. Persistence of this rhythm depends on the presence of either soluble starch synthase III or granule-bound starch synthase I (GBSSI). We show that both enzymes play a similar function in synthesizing the long glucan fraction that interconnects the amylopectin clusters. We demonstrate that in log phase-oscillating cultures, GBSSI is required to obtain maximal polysaccharide content and fully compensates for the loss of soluble starch synthase III. A point mutation in the GBSSI gene that prevents extension of amylopectin chains, but retains the enzymes normal ability to extend maltooligosaccharides, abolishes the function of GBSSI both in amylopectin and amylose synthesis and leads to a decrease in starch content in oscillating cultures. We propose that GBSSI has evolved as a major enzyme of amylopectin synthesis and that amylose synthesis comes as a secondary consequence of prolonged synthesis by GBSSI in arrhythmic systems. Maintenance in higher plant leaves of circadian clock control of GBSSI transcription is discussed.


BMC Plant Biology | 2008

Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis

Xiaoli Zhang; Nicolas Szydlowski; David Delvallé; Christophe D'Hulst; Martha G. James; Alan M. Myers

BackgroundThe biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectins architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS), whereas glycogen biosynthesis typically requires only one class of glycogen synthase.ResultsNull mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP) 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes.ConclusionSSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between different SSs for binding to substrate could in part explain the specific distribution of glucan chains within amylopectin.


The Plant Cell | 2006

Mutants of Arabidopsis Lacking Starch Branching Enzyme II Substitute Plastidial Starch Synthesis by Cytoplasmic Maltose Accumulation

Sylvain Dumez; Fabrice Wattebled; David Dauvillée; David Delvallé; Véronique Planchot; Steven G. Ball; Christophe D'Hulst

Three genes, BE1, BE2, and BE3, which potentially encode isoforms of starch branching enzymes, have been found in the genome of Arabidopsis thaliana. Although no impact on starch structure was observed in null be1 mutants, modifications in amylopectin structure analogous to those of other branching enzyme II mutants were detected in be2 and be3. No impact on starch content was found in any of the single mutant lines. Moreover, three double mutant combinations were produced (be1 be2, be1 be3, and be2 be3), and the impact of the mutations on starch content and structure was analyzed. Our results suggest that BE1 has no apparent function for the synthesis of starch in the leaves, as both be1 be2 and be1 be3 double mutants display the same phenotype as be2 and be3 separately. However, starch synthesis was abolished in be2 be3, while high levels of α-maltose were assayed in the cytosol. This result indicates that the functions of both BE2 and BE3, which belong to class II starch branching enzymes, are largely redundant in Arabidopsis. Moreover, we demonstrate that maltose accumulation depends on the presence of an active ADP-glucose pyrophosphorylase and that the cytosolic transglucosidase DISPROPORTIONATING ENZYME2, required for maltose metabolization, is specific for β-maltose.


Plant Physiology | 2004

Starch Division and Partitioning. A Mechanism for Granule Propagation and Maintenance in the Picophytoplanktonic Green Alga Ostreococcus tauri

Jean-Philippe Ral; Evelyne Derelle; Conchita Ferraz; Fabrice Wattebled; Benoît Farinas; Florence Corellou; Alain Buléon; Marie-Christine Slomianny; David Delvallé; Christophe D'Hulst; Stephane Rombauts; Hervé Moreau; Steven G. Ball

Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.


Plant Physiology | 2008

Further Evidence for the Mandatory Nature of Polysaccharide Debranching for the Aggregation of Semicrystalline Starch and for Overlapping Functions of Debranching Enzymes in Arabidopsis Leaves

Fabrice Wattebled; Véronique Planchot; Ying Dong; Nicolas Szydlowski; Bruno Pontoire; Aline Devin; Steven G. Ball; Christophe D'Hulst

Four isoforms of debranching enzymes are found in the genome of Arabidopsis (Arabidopsis thaliana): three isoamylases (ISA1, ISA2, and ISA3) and a pullulanase (PU1). Each isoform has a specific function in the starch pathway: synthesis and/or degradation. In this work we have determined the levels of functional redundancy existing between these isoforms by producing and analyzing different combinations of mutations: isa3-1 pu1-1, isa1-1 isa3-1, and isa1-1 isa3-1 pu1-1. While the starch content strongly increased in the isa3-1 pu1-1 double mutant, the latter decreased by over 98% in the isa1-1 isa3-1 genotype and almost vanished in triple mutant combination. In addition, whereas the isa3-1 pu1-1 double mutant synthesizes starch very similar to that of the wild type, the structure of the residual starch present either in isa1-1 isa3-1 or in isa1-1 isa3-1 pu1-1 combination is deeply affected. In the same way, water-soluble polysaccharides that accumulate in the isa1-1 isa3-1 and isa1-1 isa3-1 pu1-1 genotypes display strongly modified structure compared to those found in isa1-1. Taken together, these results show that in addition to its established function in polysaccharide degradation, the activity of ISA3 is partially redundant to that of ISA1 for starch synthesis. Our results also reveal the dual function of pullulanase since it is partially redundant to ISA3 for degradation and to ISA1 for synthesis. Finally, x-ray diffraction analyses suggest that the crystallinity and the presence of the 9- to 10-nm repetition pattern in starch precisely depend on the level of debranching enzyme activity.


Plant Physiology | 1999

Novel, Starch-Like Polysaccharides Are Synthesized by an Unbound Form of Granule-Bound Starch Synthase in Glycogen-Accumulating Mutants of Chlamydomonas reinhardtii

David Dauvillée; Christophe Colleoni; Eudean Shaw; Grégory Mouille; Christophe D'Hulst; Matthew K. Morell; Michael S. Samuel; Brigitte Bouchet; Daniel J. Gallant; Anthony J. Sinskey; Steven G. Ball

In vascular plants, mutations leading to a defect in debranching enzyme lead to the simultaneous synthesis of glycogen-like material and normal starch. In Chlamydomonas reinhardtii comparable defects lead to the replacement of starch by phytoglycogen. Therefore, debranching was proposed to define a mandatory step for starch biosynthesis. We now report the characterization of small amounts of an insoluble, amylose-like material found in the mutant algae. This novel, starch-like material was shown to be entirely dependent on the presence of granule-bound starch synthase (GBSSI), the enzyme responsible for amylose synthesis in plants. However, enzyme activity assays, solubilization of proteins from the granule, and western blots all failed to detect GBSSI within the insoluble polysaccharide matrix. The glycogen-like polysaccharides produced in the absence of GBSSI were proved to be qualitatively and quantitatively identical to those produced in its presence. Therefore, we propose that GBSSI requires the presence of crystalline amylopectin for granule binding and that the synthesis of amylose-like material can proceed at low levels without the binding of GBSSI to the polysaccharide matrix. Our results confirm that amylopectin synthesis is completely blocked in debranching-enzyme-defective mutants of C. reinhardtii.


Journal of Experimental Botany | 2011

Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch

Nicolas Szydlowski; Paula Ragel; Tracie A. Hennen-Bierwagen; Véronique Planchot; Alan M. Myers; Ángel Mérida; Christophe D'Hulst; Fabrice Wattebled

This study assessed the impact on starch metabolism in Arabidopsis leaves of simultaneously eliminating multiple soluble starch synthases (SS) from among SS1, SS2, and SS3. Double mutant ss1- ss2- or ss1- ss3- lines were generated using confirmed null mutations. These were compared to the wild type, each single mutant, and ss1- ss2- ss3- triple mutant lines grown in standardized environments. Double mutant plants developed similarly to the wild type, although they accumulated less leaf starch in both short-day and long-day diurnal cycles. Despite the reduced levels in the double mutants, lines containing only SS2 and SS4, or SS3 and SS4, are able to produce substantial amounts of starch granules. In both double mutants the residual starch was structurally modified including higher ratios of amylose:amylopectin, altered glucan chain length distribution within amylopectin, abnormal granule morphology, and altered placement of α(1→6) branch linkages relative to the reducing end of each linear chain. The data demonstrate that SS activity affects not only chain elongation but also the net result of branch placement accomplished by the balanced activities of starch branching enzymes and starch debranching enzymes. SS3 was shown partially to overlap in function with SS1 for the generation of short glucan chains within amylopectin. Compensatory functions that, in some instances, allow continued residual starch production in the absence of specific SS classes were identified, probaby accomplished by the granule bound starch synthase GBSS1.

Collaboration


Dive into the Christophe D'Hulst's collaboration.

Top Co-Authors

Avatar

Steven G. Ball

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

David Dauvillée

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Buléon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Colleoni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Luc Putaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

David Delvallé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Véronique Planchot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Ral

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge