Christophe Devals
École Polytechnique de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Devals.
Computers & Chemical Engineering | 2008
Christophe Devals; Mourad Heniche; Katsuhide Takenaka; Philippe A. Tanguy
A CFD characterization of the hydrodynamics of the Maxblend impeller with experimental validations has been carried out with viscous Newtonian and non-Newtonian inelastic fluids. The mixing cases investigated were the non-baffled configuration with Newtonian and shear-thinning fluids, and the baffled configuration with only Newtonian fluids. The study focused on the effect of the impeller bottom clearance and the Reynolds number on the power characteristics, the distribution of shear rates and the overall flow conditions in the vessel. It was found that the bottom clearance plays a significant role on the power consumption, and that the value of the Reynolds number and the power law index strongly affect the axial pumping efficiency and the shear rate profile. The best performance was obtained when the impeller Reynolds number is superior to 10.
IOP Conference Series: Earth and Environmental Science | 2010
T C Vu; Christophe Devals; Y Zhang; Bernd Nennemann; François Guibault
Steady state computations are routinely used by design engineers to evaluate and compare losses in hydraulic components. In the case of the draft tube diffuser, however, experiments have shown that while a significant number of operating conditions can adequately be evaluated using steady state computations, a few operating conditions require unsteady simulations to accurately evaluate losses. This paper presents a study that assesses the predictive capacity of a combination of steady and unsteady RANS numerical computations to predict draft tube losses over the complete range of operation of a Francis turbine. For the prediction of the draft tube performance using k-epsilon turbulence model, a methodology has been proposed to average global performance indicators of steady flow computation such as the pressure recovery factor over an adequate number of periods to obtain correct results. The methodology will be validated using two distinct flow solvers, CFX and OpenFOAM, and through a systematic comparison with experimental results obtained on the FLINDT model draft tube.
International Journal of Fluid Machinery and Systems | 2011
T C Vu; Christophe Devals; Y Zhang; Bernd Nennemann; François Guibault
Steady state computations are routinely used by design engineers to evaluate and compare losses in hydraulic components. In the case of the draft tube diffuser, however, experiments have shown that while a significant number of operating conditions can adequately be evaluated using steady state computations, a few operating conditions require unsteady simulations to accurately evaluate losses. This paper presents a study that assesses the predictive capacity of a combination of steady and unsteady RANS numerical computations to predict draft tube losses over the complete range of operation of a Francis turbine. For the prediction of the draft tube performance using k- turbulence model, a methodology has been proposed to average global performance indicators of steady flow computations such as the pressure recovery factor over an adequate number of periods to obtain correct results. The methodology will be validated using two distinct flow solvers, CFX and OpenFOAM, and through a systematic comparison with experimental results obtained on the FLINDT model draft tube.
International Journal of Fluid Machinery and Systems | 2015
Christophe Devals; T C Vu; François Guibault
This paper presents a CFD-based methodology for the prediction of guide vane torque in hydraulic turbine distributor for aligned and misaligned configurations. A misaligned or desynchronized configuration occurs when the opening angle of one guide vane differs from the opening angle of all other guide vanes, which may lead to a torque increase on neighbouring guide vanes. A fully automated numerical procedure is presented, that automates computations for a complete range of operation of a 2D or 3D distributor. Results are validated against laboratory measurements.
Engineering Applications of Computational Fluid Mechanics | 2015
Berhanu Mulu; Michel J. Cervantes; Christophe Devals; T C Vu; François Guibault
This paper presents a detailed comparison of steady and unsteady turbulent flow simulation results in the U9 Kaplan turbine draft tube with experimental velocity and pressure measurements. The computational flow domain includes the guide vanes, the runner and the draft tube. A number of turbulence models were studied, including the standard , RNG , SST and SST-SAS models. Prediction of the flow behavior in the conical section of the draft tube directly below the runner cone is very sensitive to the prediction of the separation point on the runner cone. The results demonstrate a significant increase in precision of the flow modeling in the runner cone region by using unsteady flow simulations compare to stage simulation. The prediction of the flow in the runner cone region, however, remains delicate, and no turbulence model could accurately predict the complex phenomena observed experimentally.
IOP Conference Series: Earth and Environmental Science | 2014
Hossein Hosseinimanesh; T C Vu; Christophe Devals; B Nennemann; François Guibault
Runaway speed is an important performance factor for the safe operation of hydropower systems. In turbine design, the manufacturers must conduct several model tests to calculate the accurate value of runaway speed for the complete range of operating conditions, which are expensive and time-consuming. To study runaway conditions, the application of numerical tools such as unsteady CFD simulations can help to better understand the complex flow physics during transient processes. However, unsteady simulations require significant computational effort to compute accurate values of runaway speed due to difficulties related to unsteady turbulent flow modelling and instabilities. The present study presents a robust methodology based on steady-state RANS flow simulations capable of predicting the runaway speed of a Francis turbine with an adequate level of accuracy and in a reasonable simulation time. The simulations are implemented using a commercial flow solver and an iterative algorithm that relies on a smooth relation between turbine torque and speed coefficient. The impact of friction has been considered when estimating turbine torque, in order to improve the accuracy. The results of this study show good agreement with experiments.
Volume 2: Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues; Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes | 2013
Salman Bahrami; Christophe Tribes; Christophe Devals; T C Vu; François Guibault
A robust multi-fidelity design optimization methodology has been developed to integrate advantages of high- and low-fidelity analyses and alleviate their weaknesses. The aim of this methodology is to reach more efficient turbine runners with respect to different constraints, in reasonable computational time and cost. In such a framework, an inexpensive low-fidelity (inviscid) solver handles most of the computational burden by providing data for the optimizer to evaluate objective functions and constraint values in the low-fidelity phase. An open-source derivative-free optimizer, NOMAD, explores the search space. Promising candidates are selected among all feasible solutions using a filtering process. The proposed filtering process accounts for Pareto optimal solutions and considers solutions which are different in the design variable space and are dominant in their local territories. A high-fidelity (viscous) solver is used outside the optimization loop to accurately evaluate filtered solutions. Accurate information achieved by high-fidelity analyses is also employed to recalibrate the low-fidelity optimization.The developed methodology demonstrated its ability to redesign a Francis turbine blade for a given best efficiency operating condition. The original and optimized cases were evaluated and compared for a complete range of operating conditions by calculating the efficiency curves and losses of different components. The optimal blade has provided an efficient runner for the given operating conditions considering the design constraints.Copyright
IOP Conference Series: Earth and Environmental Science | 2012
T C Vu; Christophe Devals; J Disciullo; Horea Iepan; Y Zhang; François Guibault
This paper presents a CFD-based methodology for the prediction of guide vane torque in hydraulic turbine distributors for synchronized and desynchronized configurations. A desynchronized configuration occurs when the opening angle of one guide vane differs from the opening angle of all other guide vanes, which may lead to a torque increase on neigbouring guide vanes. A fully automated numerical procedure is presented, that automates computations for a complete range of operation of a distributor. Results are validated against laboratory measurements.
International Journal of Fluid Machinery and Systems | 2015
Hossein Hosseinimanesh; Christophe Devals; Bernd Nennemann; François Guibault
No-load speed is an important performance factor for the safe operation of hydropower systems. In turbine design, the manufacturers must conduct several model tests to calculate the accurate value of no-load speed for the complete range of operating conditions, which are expensive and time-consuming. The present study presents steady and unsteady methods for calculating no-load speed of a Francis turbine. The steady simulations are implemented using a commercial flow solver and an iterative algorithm that relies on a smooth relation between turbine torque and speed factor. The unsteady method uses unsteady RANS simulations that have been integrated with a user subroutine to compute and return the value of runner speed, time step and friction torque. The main goal of this research is to evaluate and compare the two methods by calculating turbine dynamic parameters for three test cases consisting of high and medium head Francis turbines. Overall, the numerical results agreed well with experimental data. The unsteady method provided more accurate results in the opening angle range from 20 to 26 degrees. Nevertheless, the steady results showed more consistency than unsteady results for the three different test cases at different operating conditions.
IOP Conference Series: Earth and Environmental Science | 2014
Christophe Devals; Y Zhang; Julien Dompierre; T C Vu; Luca Mangani; François Guibault
Nowadays, computational fluid dynamics is commonly used by design engineers to evaluate and compare losses in hydraulic components as it is less expensive and less time consuming than model tests. For that purpose, an automatic tool for casing and distributor analysis will be presented in this paper. An in-house mesh generator and a Reynolds Averaged Navier-Stokes equation solver using the standard k-ω SST turbulence model will be used to perform all computations. Two solvers based on the C++ OpenFOAM library will be used and compared to a commercial solver. The performance of the new fully coupled block solver developed by the University of Lucerne and Andritz will be compared to the standard 1.6ext segregated simpleFoam solver and to a commercial solver. In this study, relative comparisons of different geometries of casing and distributor will be performed. The present study is thus aimed at validating the block solver and the tool chain and providing design engineers with a faster and more reliable analysis tool that can be integrated into their design process.