Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Dupuy is active.

Publication


Featured researches published by Christophe Dupuy.


Proceedings of SPIE | 2010

The MUSE second-generation VLT instrument

Roland Bacon; Matteo Accardo; L. Adjali; Heiko Anwand; Svend-Marian Bauer; I. Biswas; J. Blaizot; D. Boudon; Sylvie Brau-Nogue; Jarle Brinchmann; P. Caillier; L. Capoani; C. M. Carollo; T. Contini; P. Couderc; E. Daguisé; Sebastian Deiries; B. Delabre; S. Dreizler; Jean-Pierre Dubois; M. Dupieux; Christophe Dupuy; Eric Emsellem; T. Fechner; A. Fleischmann; Marc François; G. Gallou; T. Gharsa; Andreas Glindemann; Domingo Gojak

Summary: The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph currently in manufacturing, assembly and integration phase. MUSE has a field of 1x1 arcmin2 sampled at 0.2x0.2 arcsec2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The instrument is a large assembly of 24 identical high performance integral field units, each one composed of an advanced image slicer, a spectrograph and a 4kx4k detector. In this paper we review the progress of the manufacturing and report the performance achieved with the first integral field unit.


Proceedings of SPIE | 2004

MACAO-VLTI adaptive optics systems performance

Robin Arsenault; R. Donaldson; Christophe Dupuy; Enrico Fedrigo; Norbert Hubin; Liviu Ivanescu; Markus Kasper; Sylvain Oberti; Jerome Paufique; Silvio Rossi; Armin Silber; Bernhard Delabre; Jean-Louis Lizon; Pierre Gigan

In April and August ’03 two MACAO-VLTI curvature AO systems were installed on the VLT telescopes unit 2 and 3 in Paranal (Chile). These are 60 element systems using a 150mm bimorph deformable mirror and 60 APD’s as WFS detectors. Valuable integration & commissioning experience has been gained during these 2 missions. Several tests have been performed in order to evaluate system performance on the sky. The systems have proven to be extremely robust, performing in a stable fashion in extreme seeing condition (seeing up to 3”). Strehl ratio of 0.65 and residual tilt smaller than 10 mas have been obtained on the sky in 0.8” seeing condition. Weak guide source performance is also excellent with a strehl of 0.26 on a V~16 magnitude star. Several functionalities have been successfully tested including: chopping, off-axis guiding, atmospheric refraction compensation etc. The AO system can be used in a totally automatic fashion with a small overhead: the AO loop can be closed on the target less than 60 sec after star acquisition by the telescope. It includes reading the seeing value given by the site monitor, evaluate the guide star magnitude (cycling through neutral density filters) setting the close-loop AO parameters (system gain and vibrating membrane mirror stroke) including calculation of the command-matrix. The last 2 systems will be installed in August ’04 and in the course of 2005.


Astronomical Telescopes and Instrumentation | 2003

MACAO-VLTI: an adaptive optics system for the ESO interferometer

Robin Arsenault; Jaime Alonso; Henri Bonnet; Joar Brynnel; Bernard Delabre; Robert Donaldson; Christophe Dupuy; Enrico Fedrigo; Jacopo Farinato; Norbert Hubin; Liviu Ivanescu; Markus Kasper; Jerome Paufique; Silvio Rossi; Sebastien Tordo; Stefan Stroebele; J.-L. Lizon; Pierre Gigan; Francoise Delplancke; Armin Silber; Marco Quattri; Roland Reiss

MACAO stands for Multi Application Curvature Adaptive Optics. A similar concept is applied to fulfill the need for wavefront correction for several VLT instruments. MACAO-VLTI is one of these built in 4 copies in order to equip the Coude focii of the ESO VLTs. The optical beams will then be corrected before interferometric recombination in the VLTI (Very Large Telescope Interferometer) laboratory. MACAO-VLTI uses a 60 elements bimorph mirror and curvature wavefront sensor. A custom made board processes the signals provided by the wavefront detectors, 60 Avalanche Photo-diodes, and transfer them to a commercial Power PC CPU board for Real Time Calculation. Mirrors Commands are sent to a High Voltage amplifier unit through an optical fiber link. The tip-tilt correction is done by a dedicated Tip-tilt mount holding the deformable mirror. The whole wavefront is located at the Coude focus. Software is developed in house and is ESO compatible. Expected performance is a Strehl ratio sligthly under 60% at 2.2 micron for bright reference sources (star V<10) and a limiting magnitude of 17.5 (Strehl ~0.1). The four systems will be installed in Paranal successively, the first one being planned for June 2003 and the last one for June 2004.


Proceedings of SPIE | 2008

Design and performances of the Shack-Hartmann sensor within the Active Phasing Experiment

Ruben Mazzoleni; F. Gonte; Isabelle Surdej; C. Araujo; Roland Brast; Frederic Derie; Philippe Duhoux; Christophe Dupuy; Christoph Frank; Robert Karban; Lothar Noethe; N. Yaitskova

The Shack-Hartmann Phasing Sensor (SHAPS) has been integrated in the Active Phasing Experiment (APE) at ESO. It is currently under test in the laboratory. The tests on sky are foreseen for the end of 2008, when APE will be mounted at the Nasmyth focus of one of the VLT unit telescopes. SHAPS is based on the Shack-Hartmann principle: the lenslet array is located in a plane which is optically conjugated to the Active Segmented Mirror (ASM) of APE and is composed of two types of microlenses, circular and cylindrical, which give information about the wavefront slope and the piston steps, respectively. This proceeding contains a description of SHAPS and of the algorithms implemented for the wavefront reconstruction and for the phasing. The preliminary results obtained during the laboratory tests are discussed and compared with the theoretical predictions. The performances of SHAPS at the VLT and at the European Extremely Large Telescope (E-ELT) are estimated.


Proceedings of SPIE | 2010

The Very Large Telescope Interferometer: 2010 edition

Pierre Haguenauer; Jaime Alonso; Pierre Bourget; S. Brillant; Philippe B. Gitton; Stephane Guisard; Sébastien Poupar; Nicolas Schuhler; Roberto Abuter; Luigi Andolfato; Guillaume Blanchard; Jean-Philippe Berger; Angela Cortes; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Bruno Gilli; Andreas Glindemann; Serge Guniat; Gerhard Huedepohl; Andreas Kaufer; Jean-Baptiste Le Bouquin; Samuel A. Leveque; Serge Menardi; A. Mérand; S. Morel; Isabelle Percheron; Than Phan Duc; Andres Pino

The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8-m Unit Telescopes (UT) and the four 1.8-m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The two VLTI instruments, MIDI and AMBER deliver regular scientific results. In parallel to the operation, the instruments developments are pursued, and new modes are studied and commissioned to offer a wider range of scientific possibilities to the community. New configurations of the ATs array are discussed with the science users of the VLTI and implemented to optimize the scientific return. The monitoring and improvement of the different systems of the VLTI is a continuous work. The PRIMA instrument, bringing astrometry capability to the VLTI and phase referencing to the instruments has been successfully installed and the commissioning is ongoing. The possibility for visiting instruments has been opened to the VLTI facility.


Proceedings of SPIE | 2014

ESO adaptive optics facility progress and first laboratory test results

Robin Arsenault; Pierre-Yves Madec; Jerome Paufique; Paolo La Penna; Stefan Stroebele; Elise Vernet; Jean-Francois Pirard; W. Hackenberg; Harald Kuntschner; Johann Kolb; Nicolas Muller; Aurea Garcia-Rissmann; Miska Le Louarn; Paola Amico; Norbert Hubin; Jean-Louis Lizon; Rob Ridings; Pierre Haguenauer; José Antonio Abad; Gerhard Fischer; Volker Heinz; M. Kiekebusch; Javier Argomedo; Ralf Conzelmann; Sebastien Tordo; R. Donaldson; Christian Soenke; Philippe Duhoux; Enrico Fedrigo; Bernard Delabre

The Adaptive Optics Facility project is completing the integration of its systems at ESO Headquarters in Garching. The main test bench ASSIST and the 2nd Generation M2-Unit (hosting the Deformable Secondary Mirror) have been granted acceptance late 2012. The DSM has undergone a series of tests on ASSIST in 2013 which have validated its optical performance and launched the System Test Phase of the AOF. This has been followed by the performance evaluation of the GRAAL natural guide star mode on-axis and will continue in 2014 with its Ground Layer AO mode. The GALACSI module (for MUSE) Wide-Field-Mode (GLAO) and the more challenging Narrow-Field-Mode (LTAO) will then be tested. The AOF has also taken delivery of the second scientific thin shell mirror and the first 22 Watt Sodium laser Unit. We will report on the system tests status, the performances evaluated on the ASSIST bench and advancement of the 4Laser Guide Star Facility. We will also present the near future plans for commissioning on the telescope and some considerations on tools to ensure an efficient operation of the Facility in Paranal.


Applied Optics | 2009

Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes

F. Gonte; Christophe Dupuy; Bruno Luong; Christoph Frank; Roland Brast; Baback Sedghi

The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.


Astronomical Telescopes and Instrumentation | 2000

MACAO and its application for the VLT Interferometer

Robert Donaldson; Domenico Bonaccini; Joar Brynnel; Bernard Buzzoni; Laird M. Close; Bernard Delabre; Christophe Dupuy; Jacopo Farinato; Enrico Fedrigo; Norbert Hubin; Enrico Marchetti; Stefan Stroebele; Sebastien Tordo

The European Southern Observatory is developing a medium order curvature adaptive optics system designed to be operable with minimal modification at any focus of the Very Large telescope (VLT). The first application of this AO system (MACAO) is to equip all four VLT Unit Telescope (UT) Coude foci with 60 element AO systems capable of delivering to the VLT Interferometer (VLTI) > 50% K band Strehl. The AO system being used by an interferometer is constrained to introduce minimal piston and operating as a sub-system of a large and complex instrument to have a robust architecture and simple operation. Installation of the first AO system is scheduled to begin first Quarter 2002 with completion of all four UTs by early 2004. Other applications of the MACAO system will be for use by the CRIRES and SPIFFI spectrographs.


Proceedings of SPIE | 2008

The Very Large Telescope Interferometer: an update

Pierre Haguenauer; Roberto Abuter; Jaime Alonso; Javier Argomedo; Bertrand Bauvir; Guillaume Blanchard; Henri Bonnet; S. Brillant; Michael Cantzler; Frederic Derie; Francoise Delplancke; Nicola Di Lieto; Christophe Dupuy; Yves Durand; Philippe B. Gitton; Bruno Gilli; Andreas Glindemann; Serge Guniat; Stephane Guisard; Nicolas Haddad; Gerhard Hudepohl; Christian A. Hummel; Nathaniel Jesuran; Andreas Kaufer; Bertrand Koehler; Jean-Baptiste Le Bouquin; Samuel A. Leveque; C. Lidman; Pedro Mardones; Serge Menardi

The ESO Very Large Telescope Interferometer (VLTI) offers access to the four 8 m Unit Telescopes (UT) and the four 1.8 m Auxiliary Telescopes (AT) of the Paranal Observatory located in the Atacama Desert in northern Chile. The fourth AT has been delivered to operation in December 2006, increasing the flexibility and simultaneous baselines access of the VLTI. Regular science operations are now carried on with the two VLTI instruments, AMBER and MIDI. The FINITO fringe tracker is now used for both visitor and service observations with ATs and will be offered on UTs in October 2008, bringing thus the fringe tracking facility to VLTI instruments. In parallel to science observations, technical periods are also dedicated to the characterization of the VLTI environment, upgrades of the existing systems, and development of new facilities. We will describe the current status of the VLTI and prospects on future evolution.


Proceedings of SPIE | 2006

Shack-Hartmann sensor for the active phasing experiment

F. Gonte; Lothar Noethe; C. Araujo; Roland Brast; Christophe Dupuy; Christoph Frank; Frederic Derie

The purpose of the Active Phasing Experiment, designed at ESO, is to validate wavefront control concepts for ELT class telescopes. This instrument includes an Active Segmented Mirror, located in a pupil image. It will be mounted at a Nasmyth focus of one of the unit telescopes of the ESO VLT. The Active Phasing Experiment will compare four types of phasing sensor. One of them is based on the Shack-Hartmann principle. The lenslets in the array will be placed on intersegment borders for the measurement of piston steps, as well and inside the subapertures defined by the segments for the measurement of local slopes generated by the segments and the telescope optics. The paper describes the design of the sensor optics and the lenslet array, and discusses the expected performance of the sensor under laboratory conditions and in the telescope.

Collaboration


Dive into the Christophe Dupuy's collaboration.

Top Co-Authors

Avatar

F. Gonte

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Frederic Derie

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Jerome Paufique

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Enrico Fedrigo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Norbert Hubin

University of California

View shared research outputs
Top Co-Authors

Avatar

Roland Brast

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

J.-L. Lizon

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Robin Arsenault

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Christoph Frank

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Jaime Alonso

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge