Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe F. Randin is active.

Publication


Featured researches published by Christophe F. Randin.


Trends in Ecology and Evolution | 2008

Niche dynamics in space and time

Antoine Guisan; Olivier Broennimann; Christophe F. Randin

Niche conservatism, the tendency of a species niche to remain unchanged over time, is often assumed when discussing, explaining or predicting biogeographical patterns. Unfortunately, there has been no basis for predicting niche dynamics over relevant timescales, from tens to a few hundreds of years. The recent application of species distribution models (SDMs) and phylogenetic methods to analysis of niche characteristics has provided insight to niche dynamics. Niche shifts and conservatism have both occurred within the last 100 years, with recent speciation events, and deep within clades of species. There is increasing evidence that coordinated application of these methods can help to identify species which likely fulfill one key assumption in the predictive application of SDMs: an unchanging niche. This will improve confidence in SDM-based predictions of the impacts of climate change and species invasions on species distributions and biodiversity.


Science | 2012

Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders

Blaise Petitpierre; Christoph Kueffer; Olivier Broennimann; Christophe F. Randin; Curtis C. Daehler; Antoine Guisan

Invading a Place Like Home Biological invasions can cause enormous economic problems but they also represent a biological experiment and provide insight into species distributions and range expansion or restriction. Most predictions about when and where species will invade rest on the assumption that invasive species will retain the same climatic niche in the invaded area. But is this assumption valid? Petitpierre et al. (p. 1344) studied a large data set on plant invasions between Eurasia, North America, and Australia and indeed found that fewer than 15% of the studied species occupied more than 10% of invaded distribution outside their native climatic niche, and only one species exhibited >50% climatic niche expansion in its invaded range. Thus, niche shifts are rather rare events in plant invasions. Distribution data for 50 species confirms that invasive plants usually expand into areas with similar climate characteristics. The assumption that climatic niche requirements of invasive species are conserved between their native and invaded ranges is key to predicting the risk of invasion. However, this assumption has been challenged recently by evidence of niche shifts in some species. Here, we report the first large-scale test of niche conservatism for 50 terrestrial plant invaders between Eurasia, North America, and Australia. We show that when analog climates are compared between regions, fewer than 15% of species have more than 10% of their invaded distribution outside their native climatic niche. These findings reveal that substantial niche shifts are rare in terrestrial plant invaders, providing support for an appropriate use of ecological niche models for the prediction of both biological invasions and responses to climate change.


Ecology Letters | 2008

Prediction of plant species distributions across six millennia

Christophe F. Randin; Olivier Broennimann; Pascal Vittoz; Willem Oscar van der Knaap; Robin Engler; Gwenaëlle Le Lay; Niklaus E. Zimmermann; Antoine Guisan

The usefulness of species distribution models (SDMs) in predicting impacts of climate change on biodiversity is difficult to assess because changes in species ranges may take decades or centuries to occur. One alternative way to evaluate the predictive ability of SDMs across time is to compare their predictions with data on past species distributions. We use data on plant distributions, fossil pollen and current and mid-Holocene climate to test the ability of SDMs to predict past climate-change impacts. We find that species showing little change in the estimated position of their realized niche, with resulting good model performance, tend to be dominant competitors for light. Different mechanisms appear to be responsible for among-species differences in model performance. Confidence in predictions of the impacts of climate change could be improved by selecting species with characteristics that suggest little change is expected in the relationships between species occurrence and climate patterns.


Biological Invasions | 2011

Where will conflicts between alien and rare species occur after climate and land-use change? A test with a novel combined modelling approach

Joana R. Vicente; Christophe F. Randin; João Gonçalves; Marc J. Metzger; Ângela Lomba; João Honrado; Antoine Guisan

Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as both suitable for rare native species and highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated with similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions.


Arctic, Antarctic, and Alpine Research | 2009

Introduction of Snow and Geomorphic Disturbance Variables into Predictive Models of Alpine Plant Distribution in the Western Swiss Alps

Christophe F. Randin; Grégoire Vuissoz; Glen E. Liston; Pascal Vittoz; Antoine Guisan

Abstract Indirect topographic variables have been used successfully as surrogates for disturbance processes in plant species distribution models (SDM) in mountain environments. However, no SDM studies have directly tested the performance of disturbance variables. In this study, we developed two disturbance variables: a geomorphic index (GEO) and an index of snow redistribution by wind (SNOW). These were developed in order to assess how they improved both the fit and predictive power of presence-absence SDM based on commonly used topoclimatic (TC) variables for 91 plants in the Western Swiss Alps. The individual contribution of the disturbance variables was compared to TC variables. Maps of models were prepared to spatially test the effect of disturbance variables. On average, disturbance variables significantly improved the fit but not the predictive power of the TC models and their individual contribution was weak (5.6% for GEO and 3.3% for SNOW). However their maximum individual contribution was important (24.7% and 20.7%). Finally, maps including disturbance variables (i) were significantly divergent from TC models in terms of predicted suitable surfaces and connectivity between potential habitats, and (ii) were interpreted as more ecologically relevant. Disturbance variables did not improve the transferability of models at the local scale in a complex mountain system, and the performance and contribution of these variables were highly species-specific. However, improved spatial projections and change in connectivity are important issues when preparing projections under climate change because the future range size of the species will determine the sensitivity to changing conditions.


Philosophical Transactions of the Royal Society B | 2013

A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs.

Signe Normand; Christophe F. Randin; Ralf Ohlemüller; Christian Bay; Toke T. Høye; Erik Dahl Kjær; Christian Körner; Heike Lischke; Luigi Maiorano; Jens Paulsen; Achilleas Psomas; Urs A. Treier; Niklaus E. Zimmermann; Jens-Christian Svenning

Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenlands current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.


Progress in Physical Geography | 2014

Very high resolution environmental predictors in species distribution models: Moving beyond topography?

Jean-Nicolas Pradervand; Anne Dubuis; Loïc Pellissier; Antoine Guisan; Christophe F. Randin

Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species’ micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions – and therefore local management – compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.


Global Change Biology | 2014

Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia

Theofania S. Patsiou; Elena Conti; Niklaus E. Zimmermann; Spyros Theodoridis; Christophe F. Randin

Ongoing rapid climate change is predicted to cause local extinction of plant species in mountain regions. However, some plant species could have persisted during Quaternary climate oscillations without shifting their range, despite the limited evidence from fossils. Here, we tested two candidate mechanisms of persistence by comparing the macrorefugia and microrefugia (MR) hypotheses. We used the rare and endemic Saxifraga florulenta as a model taxon and combined ensembles of species distribution models (SDMs) with a high-resolution paleoclimatic and topographic dataset to reconstruct its potential current and past distribution since the last glacial maximum. To test the macrorefugia hypothesis, we verified whether the species could have persisted in or shifted to geographic areas defined by its realized niche. We then identified potential MR based on climatic and topographic properties of the landscape and applied refined scenarios of MR dynamics and functions over time. Last, we quantified the number of known occurrences that could be explained by either the macrorefugia or MR model. A consensus of two or three SDM techniques predicted absence between 14-10, 3-4 and 1 ka bp, which did not support the macrorefugia model. In contrast, we showed that S. florulenta could have contracted into MR during periods of absence predicted by the SDMs and later re-colonized suitable areas according to the macrorefugia model. Assuming a limited and realistic seed dispersal distance for our species, we explained a large number of the current occurrences (61-96%). Additionally, we showed that MR could have facilitated range expansions or shifts of S. florulenta. Finally, we found that the most recent and the most stable MR were the ones closest to current occurrences. Hence, we propose a novel paradigm to explain plant persistence by highlighting the importance of supporting functions of MR when forecasting the fate of plant species under climate change.


Journal of Environmental Management | 2013

Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions

Joana R. Vicente; Rui F. Fernandes; Christophe F. Randin; Olivier Broennimann; João Gonçalves; Bruno Marcos; Isabel Pôças; Paulo C. Alves; Antoine Guisan; João Honrado

Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.


Climate Change Responses | 2014

Functional homogenization of bumblebee communities in alpine landscapes under projected climate change

Jean-Nicolas Pradervand; Loïc Pellissier; Christophe F. Randin; Antoine Guisan

BackgroundBumblebees represent an active pollinator group in mountain regions and assure the pollination of many different plant species from low to high elevations. Plant-pollinator interactions are mediated by functional traits. Shift in bumblebee functional structure under climate change may impact plant-pollinator interactions in mountains. Here, we estimated bumblebee upward shift in elevation, community turnover, and change in functional structure under climate change.MethodWe sampled bumblebee species at 149 sites along the elevation gradient. We used stacked species distribution models (S-SDMs) forecasted under three climate change scenarios (A2, A1B, RCP3PD) to model the potential distribution of the Bombus species. Furthermore, we used species proboscis length measurements to assess the functional change in bumblebee assemblages along the elevation gradient.ResultsWe found species-specific response of bumblebee species to climate change. Species differed in their predicted rate of range contraction and expansion. Losers were mainly species currently restricted to high elevation. Under the most severe climate change scenarios (A2), we found a homogenization of proboscis length structure in bumblebee communities along the elevation gradient through the upward colonization of high elevation by species with longer proboscides.ConclusionsHere, we show that in addition to causing the shift in the distribution of bumblebee species, climate change may impact the functional structure of communities. The colonization of high elevation areas by bumblebee species with long proboscides may modify the structure of plant-pollination interaction networks by increasing the diversity of pollination services at high elevation.

Collaboration


Dive into the Christophe F. Randin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niklaus E. Zimmermann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wilfried Thuiller

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Anne Dubuis

University of Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge