Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Fontanier is active.

Publication


Featured researches published by Christophe Fontanier.


Deep-sea Research Part I-oceanographic Research Papers | 2002

Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats

Christophe Fontanier; Frans Jorissen; L Licari; A Alexandre; Pierre Anschutz; Pierre Carbonel

In the meso-oligotrophic Bay of Biscay, a diminishing downward organic matter flux with depth is accompanied by an important decrease of the live foraminiferal density. Although bottom water oxygenation is not directly influenced by organic matter input, the oxygenation of interstitial waters and the primary redox fronts do change in response to variations of the organic matter flux. The occurrence of deep and intermediate infaunal taxa can be linked to fundamental redox fronts and putative associated bacterial consortia. Our data are in agreement with the TROX-model, which explains the benthic foraminiferal microhabitat as a function of organic flux and benthic ecosystem oxygenation. Both the depth of the principle redox fronts and the microhabitat of deep infaunal species show important increases with depth. At the deepest oligotrophic stations, deep infaunal faunas become relatively poor. Therefore, the exported flux of organic matter appears to be the main parameter controlling the composition and the vertical distribution of benthic foraminiferal faunas below the sediment-water interface. The oxygenation of pore waters plays only a minor role. A species-level adaptation of the TROX-model is presented for the Bay of Biscay.


Palaeogeography, Palaeoclimatology, Palaeoecology | 2003

A dynamic concept for eastern Mediterranean circulation and oxygenation during sapropel formation

J. S. L. Casford; Eelco J. Rohling; R. Abu-Zied; Christophe Fontanier; Frans Jorissen; Melanie J. Leng; Gerhard Schmiedl; J. Thomson

We propose that intermittent bottom water ventilation occurred throughout periods of sapropel deposition, and that the recently reported sapropel ‘interruptions’ represent centennial-scale episodes of enhanced frequency/intensity of that process. In essence, the modern high-frequency variability in deep water formation (affected by climatic variability over the northern basins on seasonal to longer time scales) prevailed also at times of sapropel deposition, although the overall ventilation state was much reduced. This concept is supported by: detailed multiple-species isotope records for three Aegean cores; the presence of abundant Globorotalia truncatulinoides within especially sapropels S7 and S8 in the western Levantine basin; observations of three rapid benthic repopulations within sapropel S6 in the deep western Levantine basin; a report of continuous benthic presence through sapropel S1 at intermediate-deep locations offshore Libya; and further supporting information from the literature. In the Aegean records, concomitant abundance of low-oxygen tolerant benthic foraminifera and presence of the more oxyphilic benthic foraminifer Uvigerina mediterranea, with surface-similar δ13C values, indicate repeated deep water re-oxygenation events throughout the deposition of S1. The observations of a continuous benthic presence through S1 (offshore from Libya) imply that no persistent anoxia developed at mid-depth levels in that region, which is far removed from direct deep ventilation influences. The abundance of deep mesopelagic G. truncatulinoides through several sapropels from the western Levantine basin also suggests the presence of bio-available oxygen at many hundreds of meters of depth. Moreover, the rapid/intermittent benthic repopulations within sapropels from the deep eastern Mediterranean imply that bottom water anoxia was spatially restricted and/or of a highly intermittent nature. The short time scales of these repopulation events are incompatible with titration of an extensively anoxic water column and subsequent re-establishment of water-column anoxia. We suggest that where anoxic/azoic conditions were present, they most likely were restricted to a veneer at the sediment/water interface. The extent of such an anoxic ‘blanket’ depends on the balance between advective oxygen supply into the deep sea, and biological and chemical oxygen demand. The demand functions imply a decoupling of oxygenation from water mass advection, allowing export production and Corg posting rates to the sea floor to delimit the extent of the anoxic blanket in both space and time. Low-productivity regions would develop no anoxic blanket, allowing for the observed persistence of deep dwelling planktonic and bottom dwelling benthic faunas.


Developments in Marine Geology | 2007

Chapter Seven Paleoceanographical Proxies Based on Deep-Sea Benthic Foraminiferal Assemblage Characteristics

Frans Jorissen; Christophe Fontanier; Ellen Thomas

Publisher Summary This chapter focuses on the paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, and presents the following three proxy relationships that are promising: those between benthic foraminiferal faunas and benthic ecosystem oxygenation, export productivity, and deep-sea water mass characteristics. Under most circumstances the composition of deep-sea benthic foraminiferal assemblages is controlled by a rather limited number of environmental factors. The available proxies based on benthic foraminiferal assemblage composition show that they have major potential, but further research is needed to add or improve the quantitative aspects. In many cases, such as bottom water oxygenation, and Corg flux to the ocean floor, it can be done by significantly increasing the size of existing databases. In other cases such as periodicity of the organic flux, time series observations are necessary. A major obstacle is insufficient knowledge of the differences between recent and fossil faunas due to taphonomical alterations. This phenomenon, of importance for all paleoceanographic proxies, can to some extent be solved relatively easily in the case of foraminiferal assemblages by detailed studies of their vertical succession in sediments deposited in the last 5,000 years, when environmental conditions were probably rather invariable in many areas. Proxies based on foraminiferal assemblage composition are fundamentally different from all geochemical proxies, and thus may provide independent reconstructions of essential oceanographic parameters.


Journal of Foraminiferal Research | 2006

SEASONAL VARIABILITY OF BENTHIC FORAMINIFERAL FAUNAS AT 1000 M DEPTH IN THE BAY OF BISCAY

Christophe Fontanier; Frans Jorissen; Pierre Anschutz; Gwénaëlle Chaillou

A 1000-meter-deep station in the Bay of Biscay (station A) was sampled 10 times between October 1997 and April 2001 for the purposes of studying the temporal variability of live foraminiferal faunas in the 63–150 mm and .150 mm size fractions. The results are compared with those obtained earlier for a 550-m-deep station nearby. The study area is marked by prolonged, two-month spring blooms and less clear autumn blooms that result in labile organic matter enrichment of the upper sediment layers. Episodic exportation of phytodetritus had a recognizable impact on early diagenetic processes only in April 2001. During the 2001 spring bloom, bottom-water oxygenation and the depth of the zero-oxygen boundary were minimum. Foraminiferal faunas respond to bloom events by increases in the abundance of opportunistic taxa. In the .150 mm size fraction, Uvigerina mediterranea and Uvigerina peregrina preferentially reproduced and thrived in shallow infaunal microhabitats that are seasonally enriched in phytodetritus. Although the seasonal changes in the 63–150 mm size fraction are less straightforward, Nuttallides pusillus and Uvigerina peregrina did show marked seasonal changes in abundance. The temporal changes in the foraminiferal faunas at the 1000m-deep station appear to be synchronous with those recorded at the 550-m-deep station.


Marine Biodiversity | 2015

Is the meiofauna a good indicator for climate change and anthropogenic impacts

Daniela Zeppilli; Jozée Sarrazin; Daniel Leduc; Pedro Martínez Arbizu; Diego Fontaneto; Christophe Fontanier; Andrew J. Gooday; Reinhardt Møbjerg Kristensen; Viatcheslav N. Ivanenko; Martin V. Sørensen; Ann Vanreusel; Julien Thébault; Marianna Mea; Noemie Allio; Thomas Andro; Alexandre Arvigo; Jean-Xavier Castrec; Morgan Danielo; Valentin Foulon; Raphaelle Fumeron; Ludovic Hermabessiere; Vivien Hulot; Tristan James; Roxanne Langonne-Augen; Tangi Le Bot; Marc Long; Dendy Mahabror; Quentin Morel; Michael Pantalos; Etienne Pouplard

Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research.


Journal of Marine Research | 2002

Recent turbidite deposition in the eastern Atlantic: Early diagenesis and biotic recovery

Pierre Anschutz; Frans Jorissen; Gwénaëlle Chaillou; R. Abu-Zied; Christophe Fontanier

An interface core taken in Capbreton canyon shows a succession of sedimentary facies interpreted as classical Bouma turbiditic sequences. Activities of 234Th and 210Pb suggest that the deposition of the most recent turbidite was triggered by the violent storm that affected the Atlantic coast of southern France on the 27th of December 1999, about four months before the sampling of the core. This turbidite allows us to study the ongoing diagenesis of the new sediment layer and of the previous sediment-water interface, which has been buried and only slightly eroded. A study of benthic foraminiferal populations informs us about the rate of benthic ecosystem recovery after such a major ecosystem disturbance event. The composition of the benthic foraminiferal fauna suggests that the benthic ecosystem in Capbreton canyon remains in an early stage of colonization. The rare agglutinant taxon Technitella melo appears to be the first colonizing species. It is suggested that Technitella melo is advantaged by the food-impoverished conditions in the days following turbidite deposition. Almost all of the turbidite layer and the previous oxic sediment-water interface contain reduced dissolved metal species and were anoxic. The buried interface contains Fe- and Mn-oxides inherited from its recent oxic past. The reduction of manganese oxides was in progress at the time of core collection. The reduced Mn remained trapped in the sediment as Mn-containing carbonates. Iron-oxides did not undergo significant reductive dissolution. The top of the newly deposited turbidite formed an oxic layer, which was rapidly enriched in metal-oxides. The enrichment of manganese oxides was mostly due to the oxidation of dissolved Mn2+, which diffused from below. The enrichment of iron oxides is explained both by the oxidation of the upward flux of dissolved Fe2+, and by the input of detrital iron oxide after, or as a result of the turbidite deposition.


Paleoceanography | 2010

Reconstructing the seafloor environment during sapropel formation using benthic foraminiferal trace metals, stable isotopes, and sediment composition

S.C. Ni Fhlaithearta; Gert-Jan Reichart; Frans Jorissen; Christophe Fontanier; Eelco J. Rohling; J. Thomson; G.J. de Lange

The evolution of productivity, redox conditions, temperature, and ventilation during the deposition of an Aegean sapropel (S1) is independently constrained using bulk sediment composition and high-resolution single specimen benthic foraminiferal trace metal and stable isotope data. The occurrence of benthic foraminifer, Hoeglundina elegans (H. elegans), through a shallow water (260 m) sapropel, permits for the first time a comparison between dissolved and particulate concentrations of Ba and Mn and the construction of a Mg/Ca–based temperature record through sapropel S1. The simultaneous increase in sedimentary Ba and incorporated Ba in foraminiferal test carbonate, (Ba/Ca)H. elegans, points to a close coupling between Ba cycling and export productivity. During sapropel deposition, sedimentary Mn content ((Mn/Al)sed) is reduced, corresponding to enhanced Mn2+ mobilization from sedimentary Mn oxides under suboxic conditions. The consequently elevated dissolved Mn2+ concentrations are reflected in enhanced (Mn/Ca)H. elegans levels. The magnitude and duration of the sapropel interruption and other short-term cooling events are constrained using Mg/Ca thermometry. Based on integrating productivity and ventilation records with the temperature record, we propose a two-mode hysteresis model for sapropel formation.


Marine Pollution Bulletin | 2012

Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): Assessing the environmental impact of bauxite red mud disposal

Christophe Fontanier; M.-C. Fabri; Roselyne Buscail; L. Biscara; K.A. Koho; Gert-Jan Reichart; Daniel Cossa; S. Galaup; Gérard Chabaud; L. Pigot

Benthic foraminiferal assemblages were investigated from two sites along the axis of the Cassidaigne Canyon (NW Mediterranean Sea). Both areas are contaminated by bauxite red mud enriched in iron, titanium, vanadium and chromium. These elemental enrichments are related to bauxite-derived minerals and various amorphous phases. At the shallowest station located very close to the pipe outlet, the benthic living foraminiferal community is characterised by a very low diversity and by an unusual dominance of Gyroidina umbonata and Bulimina marginata. The mechanical stress related to downslope transport of red mud is a likely source of hydro-sedimentary pollution precluding the settlement of diverse fauna. The living and dead foraminiferal faunas from the deepest site are typical of oligo-mesotrophic conditions prevailing in natural environments. There, bauxite residues have obviously no environmental impact on foraminiferal faunas. The bioavailability of trace metals is likely low as elemental enrichments were not observed in foraminiferal test chemistry.


Scientific Reports | 2015

Unexpected biotic resilience on the Japanese seafloor caused by the 2011 Tohoku-Oki tsunami

Takashi Toyofuku; Pauline Duros; Christophe Fontanier; Briony Mamo; Sabrina Bichon; Roselyne Buscail; Gérard Chabaud; Bruno Deflandre; Sarah Goubet; Antoine Grémare; Christophe Menniti; Minami Fujii; Kiichiro Kawamura; K.A. Koho; Atsushi Noda; Yuichi Namegaya; Kazumasa Oguri; Olivier Radakovitch; Masafumi Murayama; Lennart Jan de Nooijer; Atushi Kurasawa; Nina Ohkawara; Takashi Okutani; Arito Sakaguchi; Frans Jorissen; Gert-Jan Reichart; Hiroshi Kitazato

On March 11th, 2011 the Mw 9.0 2011 Tōhoku-Oki earthquake resulted in a tsunami which caused major devastation in coastal areas. Along the Japanese NE coast, tsunami waves reached maximum run-ups of 40 m, and travelled kilometers inland. Whereas devastation was clearly visible on land, underwater impact is much more difficult to assess. Here, we report unexpected results obtained during a research cruise targeting the seafloor off Shimokita (NE Japan), shortly (five months) after the disaster. The geography of the studied area is characterized by smooth coastline and a gradually descending shelf slope. Although high-energy tsunami waves caused major sediment reworking in shallow-water environments, investigated shelf ecosystems were characterized by surprisingly high benthic diversity and showed no evidence of mass mortality. Conversely, just beyond the shelf break, the benthic ecosystem was dominated by a low-diversity, opportunistic fauna indicating ongoing colonization of massive sand-bed deposits.


Marine Biodiversity | 2018

Characteristics of meiofauna in extreme marine ecosystems: a review

Daniela Zeppilli; Daniel Leduc; Christophe Fontanier; Diego Fontaneto; Sandra Fuchs; Andrew J. Gooday; Aurélie Goineau; Jeroen Ingels; Viatcheslav N. Ivanenko; Reinhardt Møbjerg Kristensen; Ricardo Cardoso Neves; Nuria Sánchez; Roberto Sandulli; Jozée Sarrazin; Martin V. Sørensen; Aurélie Tasiemski; Ann Vanreusel; Marine Autret; Louis Bourdonnay; Marion Claireaux; Valérie Coquillé; Lisa De Wever; Durand Rachel; James Marchant; Lola Toomey; David Fernandes

Extreme marine environments cover more than 50% of the Earth’s surface and offer many opportunities for investigating the biological responses and adaptations of organisms to stressful life conditions. Extreme marine environments are sometimes associated with ephemeral and unstable ecosystems, but can host abundant, often endemic and well-adapted meiofaunal species. In this review, we present an integrated view of the biodiversity, ecology and physiological responses of marine meiofauna inhabiting several extreme marine environments (mangroves, submarine caves, Polar ecosystems, hypersaline areas, hypoxic/anoxic environments, hydrothermal vents, cold seeps, carcasses/sunken woods, deep-sea canyons, deep hypersaline anoxic basins [DHABs] and hadal zones). Foraminiferans, nematodes and copepods are abundant in almost all of these habitats and are dominant in deep-sea ecosystems. The presence and dominance of some other taxa that are normally less common may be typical of certain extreme conditions. Kinorhynchs are particularly well adapted to cold seeps and other environments that experience drastic changes in salinity, rotifers are well represented in polar ecosystems and loriciferans seem to be the only metazoan able to survive multiple stressors in DHABs. As well as natural processes, human activities may generate stressful conditions, including deoxygenation, acidification and rises in temperature. The behaviour and physiology of different meiofaunal taxa, such as some foraminiferans, nematode and copepod species, can provide vital information on how organisms may respond to these challenges and can provide a warning signal of anthropogenic impacts. From an evolutionary perspective, the discovery of new meiofauna taxa from extreme environments very often sheds light on phylogenetic relationships, while understanding how meiofaunal organisms are able to survive or even flourish in these conditions can explain evolutionary pathways. Finally, there are multiple potential economic benefits to be gained from ecological, biological, physiological and evolutionary studies of meiofauna in extreme environments. Despite all the advantages offered by meiofauna studies from extreme environments, there is still an urgent need to foster meiofauna research in terms of composition, ecology, biology and physiology focusing on extreme environments.

Collaboration


Dive into the Christophe Fontanier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eelco J. Rohling

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge