Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Gerald is active.

Publication


Featured researches published by Christophe Gerald.


Nature | 1998

GABA B receptors function as a heteromeric assembly of the subunits GABA B R1 and GABA B R2

Kenneth A. Jones; Beth Borowsky; Joe A. Tamm; Douglas A. Craig; Margaret M. Durkin; Meng Dai; Wen-Jeng Yao; Mary I. Johnson; Caryn Gunwaldsen; Ling-Yan Huang; Cheng Tang; Quanrong Shen; John Salon; Kelley L. Morse; Thomas M. Laz; Kelli E. Smith; Dhanapalan Nagarathnam; Stewart A. Noble; Theresa Branchek; Christophe Gerald

The principal inhibitory neurotransmitter GABA (γ-aminobutyric acid) exerts its effects through two ligand-gated channels, GABAA and GABAC receptors, and a third receptor, GABAB (ref. 1), which acts through G proteins to regulate potassium and calcium channels. Cells heterologously expressing the cloned DNA encoding the GABABR1 protein exhibit high-affinity antagonist-binding sites, but they produce little of the functional activity expected from studies of endogenous GABAB receptors in the brain. Here we describe a new member of the GABAB polypeptide family, GABABR2, that shows sequence homology to GABABR1. Neither GABABR1 nor GABABR2, when expressed individually, activates GIRK-type potassium channels; however, the combination of GABABR1 and GABABR2 confers robust stimulation of channel activity. Both genes are co-expressed in individual neurons, and both proteins co-localize in transfected cells. Moreover, immunoprecipitation experiments indicate that the two polypeptides associate with each other, probably as heterodimers. Several G-protein-coupled receptors (GPCRs) exist as high-molecular-weight species, consistent with the formation of dimers by these receptors, but the relevance of these species for the functioning of GPCRs has not been established. We have now shown that co-expression of two GPCR structures, GABABR1 and GABABR2, belonging to the samesubfamily is essential for signal transduction by GABAB receptors.


Neuron | 2009

Neurogenesis-Dependent and -Independent Effects of Fluoxetine in an Animal Model of Anxiety/Depression

Denis J. David; Benjamin Adam Samuels; Quentin Rainer; Jing Wen Wang; Douglas Marsteller; Indira Mendez; Michael R. Drew; Douglas A. Craig; Bruno P. Guiard; Jean-Philippe Guilloux; Roman Artymyshyn; Alain M. Gardier; Christophe Gerald; Irina Antonijevic; E. David Leonardo; René Hen

Understanding the physiopathology of affective disorders and their treatment relies on the availability of experimental models that accurately mimic aspects of the disease. Here we describe a mouse model of an anxiety/depressive-like state induced by chronic corticosterone treatment. Furthermore, chronic antidepressant treatment reversed the behavioral dysfunctions and the inhibition of hippocampal neurogenesis induced by corticosterone treatment. In corticosterone-treated mice where hippocampal neurogenesis is abolished by X-irradiation, the efficacy of fluoxetine is blocked in some, but not all, behavioral paradigms, suggesting both neurogenesis-dependent and -independent mechanisms of antidepressant action. Finally, we identified a number of candidate genes, the expression of which is decreased by chronic corticosterone and normalized by chronic fluoxetine treatment selectively in the hypothalamus. Importantly, mice deficient in one of these genes, beta-arrestin 2, displayed a reduced response to fluoxetine in multiple tasks, suggesting that beta-arrestin signaling is necessary for the antidepressant effects of fluoxetine.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Trace amines: Identification of a family of mammalian G protein-coupled receptors

Beth Borowsky; Nika Adham; Kenneth A. Jones; Rita Raddatz; Roman Artymyshyn; Kristine L. Ogozalek; Margaret M. Durkin; Parul P. Lakhlani; James A. Bonini; Sudam Pathirana; Noel Boyle; Xiaosui Pu; Evguenia V. Kouranova; Harvey Lichtblau; F. Yulina Ochoa; Theresa Branchek; Christophe Gerald

Tyramine, β-phenylethylamine, tryptamine, and octopamine are biogenic amines present in trace levels in mammalian nervous systems. Although some “trace amines” have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained speculative. Using a degenerate PCR approach, we have identified 15 G protein-coupled receptors (GPCR) from human and rodent tissues. Together with the orphan receptor PNR, these receptors form a subfamily of rhodopsin GPCRs distinct from, but related to the classical biogenic amine receptors. We have demonstrated that two of these receptors bind and/or are activated by trace amines. The cloning of mammalian GPCRs for trace amines supports a role for trace amines as neurotransmitters in vertebrates. Three of the four human receptors from this family are present in the amygdala, possibly linking trace amine receptors to affective disorders. The identification of this family of receptors should rekindle the investigation of the roles of trace amines in mammalian nervous systems and may potentially lead to the development of novel therapeutics for a variety of indications.


Nature Medicine | 2002

Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist.

Beth Borowsky; Margaret M. Durkin; Kristine L. Ogozalek; Mohammad R. Marzabadi; John E. Deleon; Rainer Heurich; Harvey Lichtblau; Zoya Shaposhnik; Irena Daniewska; Thomas P. Blackburn; Theresa Branchek; Christophe Gerald; Pierre J.-J. Vaysse; Carlos Forray

Melanin concentrating hormone (MCH) is an orexigenic hypothalamic neuropeptide, which plays an important role in the complex regulation of energy balance and body weight. Here we show that SNAP-7941, a selective, high-affinity MCH1 receptor (MCH1-R) antagonist, inhibited food intake stimulated by central administration of MCH, reduced consumption of palatable food, and, after chronic administration to rats with diet-induced obesity, resulted in a marked, sustained decrease in body weight. In addition, after mapping the binding sites for [3H]SNAP-7941 in rat brain, we evaluated its effects in a series of behavioral models. SNAP-7941 produced effects similar to clinically used antidepressants and anxiolytics in three animal models of depression/anxiety: the rat forced-swim test, rat social interaction and guinea pig maternal-separation vocalization tests. Given these observations, an MCH1-R antagonist may be useful not only in the management of obesity but also as a treatment for depression and/or anxiety.


Trends in Pharmacological Sciences | 2000

Galanin receptor subtypes.

Theresa Branchek; Kelli E. Smith; Christophe Gerald; Mary W. Walker

The neuropeptide galanin, which is widely expressed in brain and peripheral tissues, exerts a broad range of physiological effects. Pharmacological studies using peptide analogues have led to speculation about multiple galanin receptor subtypes. Since 1994, a total of three G-protein-coupled receptor (GPCR) subtypes for galanin have been cloned (GAL1, gal2 and gal3). Potent, selective antagonists are yet to be found for any of the cloned receptors. Major challenges in this field include linking the receptor clones with each of the known physiological actions of galanin and evaluating the evidence for additional galanin receptor subtypes.


Journal of Biological Chemistry | 2000

Identification and Characterization of Two G Protein-coupled Receptors for Neuropeptide FF

James A. Bonini; Kenneth A. Jones; Nika Adham; Carlos Forray; Roman Artymyshyn; Margaret M. Durkin; Kelli E. Smith; Joseph A. Tamm; Lakmal W. Boteju; Parul P. Lakhlani; Rita Raddatz; Wen-Jeng Yao; Kristine L. Ogozalek; Noel Boyle; Evguenia V. Kouranova; Yong Quan; Pierre J.-J. Vaysse; John M. Wetzel; Theresa Branchek; Christophe Gerald; Beth Borowsky

The central nervous system octapeptide, neuropeptide FF (NPFF), is believed to play a role in pain modulation and opiate tolerance. Two G protein-coupled receptors, NPFF1 and NPFF2, were isolated from human and rat central nervous system tissues. NPFF specifically bound to NPFF1 (K d = 1.13 nm) and NPFF2 (K d = 0.37 nm), and both receptors were activated by NPFF in a variety of heterologous expression systems. The localization of mRNA and binding sites of these receptors in the dorsal horn of the spinal cord, the lateral hypothalamus, the spinal trigeminal nuclei, and the thalamic nuclei supports a role for NPFF in pain modulation. Among the receptors with the highest amino acid sequence homology to NPFF1 and NPFF2 are members of the orexin, NPY, and cholecystokinin families, which have been implicated in feeding. These similarities together with the finding that BIBP3226, an anorexigenic Y1 receptor ligand, also binds to NPFF1 suggest a potential role for NPFF1 in feeding. The identification of NPFF1 and NPFF2 will help delineate their roles in these and other physiological functions.


Journal of Biological Chemistry | 1995

Expression Cloning and Pharmacological Characterization of a Human Hippocampal Neuropeptide Y/Peptide YY Y2 Receptor Subtype

Christophe Gerald; Mary W. Walker; Pierre J.-J. Vaysse; Chaogang He; Theresa Branchek; Richard L. Weinshank

The pancreatic polypeptide family includes neuropeptide Y (NPY), one of the most abundant neuropeptides in the mammalian nervous system, as well as peptide YY (PYY) and pancreatic polypeptide (PP). This peptide family is involved in numerous physiological processes such as memory, pain, blood pressure, appetite, anxiety, and circadian rhythm. Of the multiple Y-type receptors proposed for PP family members, only the Y1 subtype was cloned previously. We now report the isolation of a human Y2 (hhY2) receptor cDNA by expression cloning from a human hippocampal cDNA library, using a 125I-PYY binding assay. hhY2 cDNA encodes a predicted protein of 381 amino acids with low amino acid identity to the human Y1 receptor (31% overall; 41% transmembrane). 125I-PYY binding to transiently expressed hY2 receptors was saturable (pKd = 10.17) and displaceable by human PP family members in rank order: PYY (pKi = 9.47) ∼ NPY (pKi = 9.27) PP (pKi < 6) and by peptide analogs: NPY2-36 (pKi = 8.80) ∼ NPY13-36 (pKi = 8.55) ∼ C2-NPY (pKi = 8.54) > NPY26-36 (pKi = 6.51) ∼ [Leu31,Pro34]NPY (pKi = 6.23). Human PYY decreased [cAMP] and increased intracellular [Ca2+] in hY2-transfected 293 cells.


Journal of Biological Chemistry | 1998

CLONED HUMAN AND RAT GALANIN GALR3 RECEPTORS: PHARMACOLOGY AND ACTIVATION OF G-PROTEIN INWARDLY RECTIFYING K+ CHANNELS

Kelli E. Smith; Mary W. Walker; Roman Artymyshyn; Beth Borowsky; Joseph A. Tamm; Wen-Jeng Yao; Pierre J.-J. Vaysse; Theresa Branchek; Christophe Gerald; Kenneth A. Jones

The neuropeptide galanin has been implicated in the regulation of processes such as nociception, cognition, feeding behavior, and hormone secretion. Multiple galanin receptors are predicted to mediate its effects, but only two functionally coupled receptors have been reported. We now report the cloning of a third galanin receptor distinct from GALR1 and GALR2. The receptor, termed GALR3, was isolated from a rat hypothalamus cDNA library by both expression and homology cloning approaches. The rat GALR3 receptor cDNA can encode a protein of 370 amino acids with 35% and 52% identity to GALR1 and GALR2, respectively. Localization of mRNA by solution hybridization/RNase protection demonstrates that the GALR3 transcript is widely distributed, but expressed at low abundance, with the highest levels in the hypothalamus and pituitary. We also isolated the gene encoding the human homologue of GALR3. The human GALR3 receptor is 90% identical to rat GALR3 and contains 368 amino acids. Binding of porcine 125I-galanin to stably expressed rat and human GALR3 receptors is saturable (rat K D = 0.98 nm and human K D = 2.23 nm) and displaceable by galanin peptides and analogues in the following rank order: rat galanin, porcine galanin ≃ M32, M35 ≃ porcine galanin-(−7 to +29), galantide, human galanin > M40, galanin-(1–16) > [d-Trp2]galanin-(1–29), galanin-(3–29). This profile resembles that of the rat GALR1 and GALR2 receptors with the notable exception that human galanin, galanin-(1–16), and M40 show lower affinity at GALR3. InXenopus oocytes, activation of rat and human GALR3 receptors co-expressed with potassium channel subunits GIRK1 and GIRK4 resulted in inward K+ currents characteristic of Gi/Go-coupled receptors. These data confirm the functional efficacy of GALR3 receptors and further suggest that GALR3 signaling pathways resemble those of GALR1 in that both can activate potassium channels linked to the regulation of neurotransmitter release.


Journal of Biological Chemistry | 1997

Expression Cloning of a Rat Hypothalamic Galanin Receptor Coupled to Phosphoinositide Turnover

Kelli E. Smith; Carlos Forray; Mary W. Walker; Kenneth A. Jones; Joseph A. Tamm; Theresa Branchek; David L. Linemeyer; Christophe Gerald

The neuropeptide galanin is widely distributed throughout the central and peripheral nervous systems and participates in the regulation of processes such as nociception, cognition, feeding behavior, and insulin secretion. Multiple galanin receptors are predicted to underlie its physiological effects. We now report the isolation by expression cloning of a rat galanin receptor cDNA distinct from GALR1. The receptor, termed GALR2, was isolated from a rat hypothalamus cDNA library using a125I-porcine galanin (125I-pGAL) binding assay. The GALR2 cDNA encoded a protein of 372 amino acids exhibiting 38% amino acid identity with rat GALR1. Binding of125I-pGAL to transiently expressed GALR2 receptors was saturable (K D = 0.15 nm) and displaceable by galanin peptides and analogues in rank order: porcine galanin ≃ M32 ≃ M35 ≃ M40 ≥ galanin-(1–16) ≃ M15 ≃ [d-Trp2]galanin-(1–29) > C7 ≫ galanin-(3–29). This profile resembles that of the rat GALR1 receptor with the notable exception that [d-Trp2]galanin exhibited significant selectivity for GALR2 over GALR1. Activation of GALR2 receptors with porcine galanin and other galanin analogues increased inositol phospholipid turnover and intracellular calcium levels in stably transfected Chinese hamster ovary cells and generated calcium-activated chloride currents in Xenopus oocytes, suggesting that the rat GALR2 receptor is primarily coupled to the activation of phospholipase C.


Journal of Biological Chemistry | 2000

Identification and Characterization of Two Neuromedin U Receptors Differentially Expressed in Peripheral Tissues and the Central Nervous System

Rita Raddatz; Amy E. Wilson; Roman Artymyshyn; James A. Bonini; Beth Borowsky; Lakmal W. Boteju; Siqun Zhou; Evguenia V. Kouranova; Raisa Nagorny; Maricel S. Guevarra; Meng Dai; Gabriel S. Lerman; Pierre J.-J. Vaysse; Theresa Branchek; Christophe Gerald; Carlos Forray; Nika Adham

Two structurally related, G-protein-coupled receptors were identified as receptors for the neuropeptide, neuromedin U. This peptide is found in highest levels in the gut and genitourinary system where it potently contracts smooth muscle but is also expressed in the spinal cord and discrete regions of the brain. Binding sites for neuromedin U have been characterized in rat uterus, however, little is known about the activity of this peptide in the regions of the central nervous system where it is expressed. The receptors characterized in this report are activated by neuromedin U at nanomolar potency in heterologous expression systems and bind radiolabeled neuromedin U with high affinity. Localization of the receptor RNA by quantitative reverse transcription-polymerase chain reaction in a variety of human tissues shows distinct expression patterns for the two receptors. NMU1 is expressed predominantly in peripheral tissues, whereas NMU2 is more highly expressed in the central nervous system. Identification of neuromedin U receptor subtypes will greatly aid in the determination of the physiological roles of this peptide.

Collaboration


Dive into the Christophe Gerald's collaboration.

Researchain Logo
Decentralizing Knowledge