Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Hennequin is active.

Publication


Featured researches published by Christophe Hennequin.


Nature | 2004

Genome evolution in yeasts

Bernard Dujon; David James Sherman; Gilles Fischer; Pascal Durrens; Serge Casaregola; Ingrid Lafontaine; Jacky de Montigny; Christian Marck; Cécile Neuvéglise; Emmanuel Talla; Nicolas Goffard; Lionel Frangeul; Michel Aigle; Véronique Anthouard; Anna Babour; Valérie Barbe; Stéphanie Barnay; Sylvie Blanchin; Jean-Marie Beckerich; Emmanuelle Beyne; Claudine Bleykasten; Anita Boisramé; Jeanne Boyer; Laurence Cattolico; Fabrice Confanioleri; Antoine de Daruvar; Laurence Despons; Emmanuelle Fabre; Cécile Fairhead; Hélène Ferry-Dumazet

Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates. A total of approximately 24,200 novel genes were identified, the translation products of which were classified together with Saccharomyces cerevisiae proteins into about 4,700 families, forming the basis for interspecific comparisons. Analysis of chromosome maps and genome redundancies reveal that the different yeast lineages have evolved through a marked interplay between several distinct molecular mechanisms, including tandem gene repeat formation, segmental duplication, a massive genome duplication and extensive gene loss.


Journal of Clinical Microbiology | 2001

Microsatellite Typing as a New Tool for Identification of Saccharomyces cerevisiae Strains

Christophe Hennequin; A. Thierry; G. F. Richard; G. Lecointre; H. V. Nguyen; C. Gaillardin; B. Dujon

ABSTRACT Since Saccharomyces cerevisiae appears to be an emerging pathogen, there is a need for a valuable molecular marker able to distinguish among strains. In this work, we investigated the potential value of microsatellite length polymorphism with a panel of 91 isolates, including 41 clinical isolates, 14 laboratory strains, and 28 strains with industrial relevance. Testing seven polymorphic regions (five trinucleotide repeats and two dinucleotide repeats) in a subgroup of 58 unrelated strains identified a total of 69 alleles (6 to 13 per locus) giving 52 different patterns with a discriminatory power of 99.03%. We found a cluster of clinical isolates sharing their genotype with a bakery strain, suggesting a digestive colonization following ingestion of this strain with diet. With the exception of this cluster of isolates and isolates collected from the same patient or from patients treated with Saccharomyces boulardii, all clinical isolates gave different and unique patterns. The genotypes are stable, and the method is reproducible. The possibility to make the method portable is of great interest for further studies using this technique. This work shows the possibility to readily identify S. boulardii (a strain increasingly isolated from invasive infections) using a unique and specific microsatellite allele.


Proteomics | 2009

MALDI-TOF MS-based drug susceptibility testing of pathogens: The example of Candida albicans and fluconazole

Carine Marinach; Alexandre Alanio; Martine Palous; Stéphanie Kwasek; Arnaud Fekkar; Jean-Yves Brossas; Sophie Brun; Georges Snounou; Christophe Hennequin; Dominique Sanglard; Annick Datry; Jean-Louis Golmard; Dominique Mazier

MALDI‐TOF MS can be used for the identification of microorganism species. We have extended its application to a novel assay of Candida albicans susceptibility to fluconazole, based on monitoring modifications of the proteome of yeast cells grown in the presence of varying drug concentrations. The method was accurate, and reliable, and showed full agreement with the Clinical Laboratory Standards Institutes reference method. This proof‐of‐concept demonstration highlights the potential for this approach to test other pathogens.


PLOS ONE | 2010

Rapid species diagnosis for invasive candidiasis using mass spectrometry.

Carine Marinach-Patrice; Arnaud Fekkar; Ralitsa Atanasova; Johanna Gomes; Laura Djamdjian; Jean-Yves Brossas; Isabelle Meyer; Pierre Buffet; Georges Snounou; A. Datry; Christophe Hennequin; Jean-Louis Golmard; Dominique Mazier

Background Matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF-MS) allows the identification of most bacteria and an increasing number of fungi. The potential for the highest clinical benefit of such methods would be in severe acute infections that require prompt treatment adapted to the infecting species. Our objective was to determine whether yeasts could be identified directly from a positive blood culture, avoiding the 1–3 days subculture step currently required before any therapeutic adjustments can be made. Methodology/Principal Findings Using human blood spiked with Candida albicans to simulate blood cultures, we optimized protocols to obtain MALDI TOF-MS fingerprints where signals from blood proteins are reduced. Simulated cultures elaborated using a set of 12 strains belonging to 6 different species were then tested. Quantifiable spectral differences in the 5000–7400 Da mass range allowed to discriminate between these species and to build a reference database. The validation of the method and the statistical approach to spectral analysis were conducted using individual simulated blood cultures of 36 additional strains (six for each species). Correct identification of the species of these strains was obtained. Conclusions/Significance Direct MALDI TOF-MS analysis of aliquots from positive blood cultures allowed rapid and accurate identification of the main Candida species, thus obviating the need for sub-culturing on specific media. Subsequent to this proof-of-principle demonstration, the method can be extended to other clinically relevant yeast species, and applied to an adequate number of clinical samples in order to establish its potential to improve antimicrobial management of patients with fungemia.


BMC Genomics | 2013

Comparative genomics of emerging pathogens in the Candida glabrata clade

Toni Gabaldón; Tiphaine Martin; Marina Marcet-Houben; Pascal Durrens; Monique Bolotin-Fukuhara; Olivier Lespinet; Sylvie Arnaise; Stéphanie Boisnard; Gabriela Aguileta; Ralitsa Atanasova; Christiane Bouchier; Arnaud Couloux; Sophie Creno; José Almeida Cruz; Hugo Devillers; Adela Enache-Angoulvant; Juliette Guitard; Laure Jaouen; Laurence Ma; Christian Marck; Cécile Neuvéglise; Eric Pelletier; Amélie Pinard; Julie Poulain; Julien Recoquillay; Eric Westhof; Patrick Wincker; Bernard Dujon; Christophe Hennequin; Cécile Fairhead

BackgroundCandida glabrata follows C. albicans as the second or third most prevalent cause of candidemia worldwide. These two pathogenic yeasts are distantly related, C. glabrata being part of the Nakaseomyces, a group more closely related to Saccharomyces cerevisiae. Although C. glabrata was thought to be the only pathogenic Nakaseomyces, two new pathogens have recently been described within this group: C. nivariensis and C. bracarensis. To gain insight into the genomic changes underlying the emergence of virulence, we sequenced the genomes of these two, and three other non-pathogenic Nakaseomyces, and compared them to other sequenced yeasts.ResultsOur results indicate that the two new pathogens are more closely related to the non-pathogenic N. delphensis than to C. glabrata. We uncover duplications and accelerated evolution that specifically affected genes in the lineage preceding the group containing N. delphensis and the three pathogens, which may provide clues to the higher propensity of this group to infect humans. Finally, the number of Epa-like adhesins is specifically enriched in the pathogens, particularly in C. glabrata.ConclusionsRemarkably, some features thought to be the result of adaptation of C. glabrata to a pathogenic lifestyle, are present throughout the Nakaseomyces, indicating these are rather ancient adaptations to other environments. Phylogeny suggests that human pathogenesis evolved several times, independently within the clade. The expansion of the EPA gene family in pathogens establishes an evolutionary link between adhesion and virulence phenotypes. Our analyses thus shed light onto the relationships between virulence and the recent genomic changes that occurred within the Nakaseomyces.Sequence Accession NumbersNakaseomyces delphensis: CAPT01000001 to CAPT01000179Candida bracarensis: CAPU01000001 to CAPU01000251Candida nivariensis: CAPV01000001 to CAPV01000123Candida castellii: CAPW01000001 to CAPW01000101Nakaseomyces bacillisporus: CAPX01000001 to CAPX01000186


Eukaryotic Cell | 2010

The Asexual Yeast Candida glabrata Maintains Distinct a and α Haploid Mating Types

Héloı̈se Muller; Christophe Hennequin; Julien Gallaud; Bernard Dujon; Cécile Fairhead

ABSTRACT The genome of the type strain of Candida glabrata (CBS138, ATCC 2001) contains homologs of most of the genes involved in mating in Saccharomyces cerevisiae, starting with the mating pheromone and receptor genes. Only haploid cells are ever isolated, but C. glabrata strains of both mating types are commonly found, the type strain being MATα and most other strains, such as BG2, being MATa. No sexual cycle has been documented for this species. In order to understand which steps of the mating pathway are defective, we have analyzed the expression of homologs of some of the key genes involved as well as the production of mating pheromones and the organisms sensitivity to artificial pheromones. We show that cells of opposite mating types express both pheromone receptor genes and are insensitive to pheromones. Nonetheless, cells maintain specificity through regulation of the α1 and α2 genes and, more surprisingly, through differential splicing of the a1 transcript.


FEBS Letters | 2003

The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata

Romain Koszul; Alain Malpertuy; Lionel Frangeul; Christiane Bouchier; Patrick Wincker; Agnès Thierry; Stéphanie Duthoy; Stéphane Ferris; Christophe Hennequin; Bernard Dujon

We report here the complete sequence of the mitochondrial (mt) genome of the pathogenic yeast Candida glabrata. This 20 kb mt genome is the smallest among sequenced hemiascomycetous yeasts. Despite its compaction, the mt genome contains the genes encoding the apocytochrome b (COB), three subunits of ATP synthetase (ATP6, 8 and 9), three subunits of cytochrome oxidase (COX1, 2 and 3), the ribosomal protein VAR1, 23 tRNAs, small and large ribosomal RNAs and the RNA subunit of RNase P. Three group I introns each with an intronic open reading frame are present in the COX1 gene. This sequence is available under accession number AJ511533.


Eukaryotic Cell | 2009

Uneven Distribution of Mating Types among Genotypes of Candida glabrata Isolates from Clinical Samples

Sylvain Brisse; Christine Pannier; Adela Angoulvant; Thierry de Meeus; Laure Diancourt; Odile Faure; Héloïse Muller; J. Peman; Maria Anna Viviani; Renée Grillot; Bernard Dujon; Cécile Fairhead; Christophe Hennequin

ABSTRACT In order to shed light on its basic biology, we initiated a population genetic analysis of Candida glabrata, an emerging pathogenic yeast with no sexual stage yet recognized. A worldwide collection of clinical strains was subjected to analysis using variable number of tandem repeats (VNTR) at nine loci. The clustering of strains obtained with this method was congruent with that obtained using sequence polymorphism of the NMT1 gene, a locus previously proposed for lineage assignment. Linkage disequilibrium supported the hypothesis of a mainly clonal reproduction. No heterozygous diploid genotype was found. Minimum-spanning tree analysis of VNTR data revealed clonal expansions and associated genotypic diversification. Mating type analysis revealed that 80% of the strains examined are MATa and 20% MATα and that the two alleles are not evenly distributed. The MATa genotype dominated within large clonal groups that contained only one or a few MATα types. In contrast, two groups were dominated by MATα strains. Our data are consistent with rare independent mating type switching events occurring preferentially from type a to α, although the alternative possibility of selection favoring type a isolates cannot be excluded.


Fungal Genetics and Biology | 2009

Genomic polymorphism in the population of Candida glabrata: Gene copy-number variation and chromosomal translocations

Héloïse Muller; Agnès Thierry; Jean-Yves Coppée; Catherine Gouyette; Christophe Hennequin; Odile Sismeiro; Emmanuel Talla; Bernard Dujon; Cécile Fairhead

The genomic sequence of the type strain of the opportunist human pathogen Candida glabrata (CBS138, ATCC 2001) is available since 2004. This allows the analysis of genomic structure of other strains by comparative genomic hybridization. We present here the molecular analysis of a collection of 183 C. glabrata strains isolated from patients hospitalized in France and around the world. We show that the mechanisms of microevolution within this asexual species include rare reciprocal chromosomal translocations and recombination within tandem arrays of repeated genes, and that these account for the frequent size heterogeneity between chromosomes across strains. Gene tandems often encode cell wall proteins suggesting a possible role in adaptation to the environment.


Genome Biology | 2004

Large-scale exploration of growth inhibition caused by overexpression of genomic fragments in Saccharomyces cerevisiae.

Jeanne Boyer; Gwenaël Badis; Cécile Fairhead; Emmanuel Talla; Florence Hantraye; Emmanuelle Fabre; Gilles Fischer; Christophe Hennequin; Romain Koszul; Ingrid Lafontaine; Odile Ozier-Kalogeropoulos; Miria Ricchetti; Guy-Franck Richard; Agnès Thierry; Bernard Dujon

We have screened the genome of Saccharomyces cerevisiae for fragments that confer a growth-retardation phenotype when overexpressed in a multicopy plasmid with a tetracycline-regulatable (Tet-off) promoter. We selected 714 such fragments with a mean size of 700 base-pairs out of around 84,000 clones tested. These include 493 in-frame open reading frame fragments corresponding to 454 distinct genes (of which 91 are of unknown function), and 162 out-of-frame, antisense and intergenic genomic fragments, representing the largest collection of toxic inserts published so far in yeast.

Collaboration


Dive into the Christophe Hennequin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Talla

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge