Christophe Heymes
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Heymes.
Journal of the American College of Cardiology | 2003
Christophe Heymes; Jennifer K. Bendall; Philippe Ratajczak; Alison C. Cave; Jane-Lise Samuel; Gerd Hasenfuss; Ajay M. Shah
OBJECTIVES This study was designed to investigate whether nicotinamide adenine dinucleotide 3-phosphate (reduced form) (NADPH) oxidase is expressed in the human heart and whether it contributes to reactive oxygen species (ROS) production in heart failure. BACKGROUND A phagocyte-type NADPH oxidase complex is a major source of ROS in the vasculature and is implicated in the pathophysiology of hypertension and atherosclerosis. An increase in myocardial oxidative stress due to excessive production of ROS may be involved in the pathophysiology of congestive heart failure. Recent studies have suggested an important role for myocardial NADPH oxidase in experimental models of cardiac disease. However, it is unknown whether NADPH oxidase is expressed in the human myocardium or if it has any role in human heart failure. METHODS Myocardium of explanted nonfailing (n = 9) and end-stage failing (n = 13) hearts was studied for the expression of NADPH oxidase subunits and oxidase activity. RESULTS The NADPH oxidase subunits p22(phox), gp91(phox), p67(phox), and p47(phox) were all expressed at messenger ribonucleic acid and protein level in cardiomyocytes of both nonfailing and failing hearts. NADPH oxidase activity was significantly increased in end-stage failing versus nonfailing myocardium (5.86 +/- 0.41 vs. 3.72 +/- 0.39 arbitrary units; p < 0.01). The overall level of oxidase subunit expression was unaltered in failing compared with nonfailing hearts. However, there was increased translocation of the regulatory subunit, p47(phox), to myocyte membranes in failing myocardium. CONCLUSIONS This is the first report of the presence of NADPH oxidase in human myocardium. The increase in NADPH oxidase activity in the failing heart may be important in the pathophysiology of cardiac dysfunction by contributing to increased oxidative stress.
Circulation | 1999
Jean-Sébastien Silvestre; Christophe Heymes; Abdeslam Oubenaissa; Valérie Robert; Brigitte Aupetit-Faisant; Alain Carayon; Bernard Swynghedauw; Claude Delcayre
BACKGROUND This study analyzed the regulation and the role of the cardiac steroidogenic system in myocardial infarction (MI). METHODS AND RESULTS Seven days after MI, rats were randomized to untreated infarcted group or spironolactone- (20 and 80 mg x kg-1 x d-1), losartan- (8 mg x kg-1 x d-1), spironolactone plus losartan-, and L-NAME- (5 mg x kg-1 x d-1) treated infarcted groups for 25 days. Sham-operated rats served as controls. In the noninfarcted myocardium of the left ventricle (LV), MI raised aldosterone synthase mRNA (the terminal enzyme of aldosterone synthesis) by 2. 0-fold and the aldosterone level by 3.7-fold. Conversely, MI decreased 11beta-hydroxylase mRNA (the terminal enzyme of corticosterone synthesis) by 2.4-fold and the corticosterone level by 1.9-fold. MI also induced a 1.9-fold increase in cardiac angiotensin II level. Such cardiac regulations were completely prevented by treatment of the infarcted heart with losartan. The MI-induced collagen deposition in noninfarcted LV myocardium was prevented by 1.6-fold by both low and high doses of spironolactone and by 2.5-fold by losartan. In addition, norepinephrine level was unchanged in infarcted heart but was attenuated by both losartan and spironolactone treatments. CONCLUSIONS MI is associated with tissue-specific activation of myocardial aldosterone synthesis. This increase is mediated primarily by cardiac angiotensin II via AT1-subtype receptor and may be involved in post-MI ventricular fibrosis and in control of tissue norepinephrine concentration.
Circulation | 2000
Olivier Tricot; Ziad Mallat; Christophe Heymes; Joël Belmin; Guy Lesèche; Alain Tedgui
BACKGROUND Blood flow characteristics influence endothelial cell apoptosis. However, little is known about the occurrence of endothelial cell apoptosis in human atherosclerosis and its relation to blood flow. METHODS AND RESULTS A total of 42 human carotid atherosclerotic plaques were retrieved by endarterectomy; they were examined in the longitudinal axial direction. Plaques were included in this study when upstream and downstream parts were clearly visible, occlusion was absent, and immunostaining for luminal endothelium was present all along the plaque. Using these criteria, 13 plaques were processed for further immunohistochemical studies (using anti-CD31, anti-Ki-67, and anti-splicing factor antibodies) and in situ detection of apoptosis (terminal dUTP nick end-labeling and ligase assay). Eight plaques showed > or =1 apoptotic endothelial cell at the luminal surface. Quantitative analysis of endothelial cell apoptosis in these plaques showed a systematic preferential occurrence of apoptosis in the downstream parts of plaques, where low flow and low shear stress prevail, in comparison with the upstream parts (18.8+/-3.3% versus 2.7+/-1.2%, respectively, P<0.001). Endothelial cell apoptosis was barely detectable in plaque microvessels. CONCLUSIONS Our results suggest that in vivo local shear stress influences luminal endothelial cell apoptosis and may be a major determinant of plaque erosion and thrombosis.
Arteriosclerosis, Thrombosis, and Vascular Biology | 1999
Ziad Mallat; Christophe Heymes; Jeanny Ohan; Elisabetta Faggin; Guy Lesèche; Alain Tedgui
Inflammation is a major feature of human atherosclerosis and is central to development and progression of the disease. A variety of proinflammatory cytokines are expressed in the atherosclerotic plaque and may modulate extracellular matrix remodeling, cell proliferation, and cell death. Little is known, however, about the expression and potential role of anti-inflammatory cytokines in human atherosclerosis. Interleukin-10 (IL-10) is a major anti-inflammatory cytokine whose expression and potential effects in advanced human atherosclerotic plaques have not been evaluated. We studied 21 advanced human atherosclerotic plaques. IL-10 expression was analyzed by use of reverse transcription-polymerase chain reaction and immunohistochemical techniques. Inducible nitric oxide synthase expression was assessed by using immunohistochemistry, and cell death was determined by use of the TUNEL method. Reverse transcription-polymerase chain reaction identified IL-10 mRNA in 12 of 17 atherosclerotic plaques. Immunohistochemical staining of serial sections and double staining identified immunoreactive IL-10 mainly in macrophages, as well as in smooth muscle cells. Consistent with its anti-inflammatory properties, high levels of IL-10 expression were associated with significant decrease in inducible nitric oxide synthase expression (P<0.0001) and cell death (P<0. 0001). Hence, IL-10, a potent anti-inflammatory cytokine, is expressed in a substantial number of advanced human atherosclerotic plaques and might contribute to the modulation of the local inflammatory response and protect from excessive cell death in the plaque.
The Lancet | 2004
Thibaud Damy; Philippe Ratajczak; Ajay M. Shah; Emmanuel Camors; Isabelle Marty; Gerd Hasenfuss; Françoise Marotte; Jane Lise Samuel; Christophe Heymes
Experimental data suggest that nitric oxide (NO) generated from neuronal NO synthase (nNOS) modulates the myocardial inotropic state. To assess the contribution of NO, derived from endothelial and neuronal isoforms, to the pathophysiology of congestive heart failure in human beings, we compared expression, localisation, and specific activity of NOS isoforms in myocardium from patients with dilated cardiomyopathy with those in controls who had died from head trauma or intracranial bleeds. Diseased hearts had a significant increase in nNOS mRNA and protein expression, and activity associated with the translocation of nNOS to the sarcolemma through interactions with caveolin 3. Enhanced nNOS activity counteracted a decrease in eNOS expression and activity. Our results provide evidence of increased nNOS-derived NO in the failing human heart. Such altered regulation may be important in the pathophysiology of cardiac dysfunction in human congestive heart failure.
Hypertension | 1999
Valérie Robert; Christophe Heymes; Jean-Sébastien Silvestre; Abdelkarim Sabri; Bernard Swynghedauw; Claude Delcayre
This study tests the hypothesis that aldosterone induces cardiac fibrosis through an increase of cardiac angiotensin II (Ang II) AT1 receptor levels, thereby potentiating the fibrotic effect of Ang II by determining the effects of spironolactone and losartan on cardiac fibrosis, AT1 density, and gene expression in aldosterone-salt-treated rats. Fibrosis was quantified by slot blots of collagen I and III mRNA levels and videomorphometry of Sirius red-stained collagen. AT1 receptor density was determined by (125I-Sar1-Ile8)-Ang II competition binding, and AT1 mRNA levels were analyzed by quantitative reverse transcriptase polymerase chain reaction. One month of aldosterone-salt treatment induced a decrease in plasma Ang II and an increase in blood pressure, left ventricular hypertrophy, and ventricular fibrosis. Spironolactone (20 mg/kg per day) and losartan spironolactone (10 mg/kg per day) had no effect on the first 3 parameters. Losartan was as effective as spironolactone in preventing ventricular collagen mRNA increase and fibrosis. Ventricular density of AT1 receptors increased 2-fold and was accompanied by a 3-fold increase in the corresponding mRNA in aldosterone-salt compared with sham-operated rats. Both spironolactone and losartan prevented the elevation of ventricular AT1 density and that of right ventricular AT1 mRNA levels. These results demonstrate that the mechanism by which aldosterone-salt induces cardiac fibrosis involves Ang II acting through AT1 receptors. They also suggest that the cardiac AT1 receptor is a target for aldosterone.
Circulation Research | 1998
Chantal M. Boulanger; Christophe Heymes; Joëlle Benessiano; Robert S. Geske; Bernard I. Levy; Paul M. Vanhoutte
The nitric oxide synthase (NOS) inhibitor nitro-L-arginine augmented the contractions to angiotensin (Ang) II in carotid artery rings without endothelium from spontaneously hypertensive rats (SHR) but not normotensive Wistar-Kyoto rats, suggesting the possibility of nonendothelial NOS activity in SHR arteries. In SHR artery without endothelium, the potentiation of Ang II contraction by nitro-L-arginine was prevented by L-arginine, but not by D-arginine, and was observed also in the presence of oxyhemoglobin, monomethyl-L-arginine, and 7-nitroindazole, but not in the presence of aminoguanidine. In further support of NOS activation by Ang II in nonendothelial cells, Ang II but not acetylcholine stimulated cGMP levels by 2-fold in SHR arteries without endothelium; nitro-L-arginine decreased both basal and Ang II-stimulated cGMP levels. When NOS activity in SHR arteries was measured, no calcium-independent L-citrulline formation was detectable, while up to 47% of the total calcium-dependent NOS activity was present in nonendothelial cells. Expression of neuronal NOS was revealed in the media of SHR arteries by immunohistochemistry, Western blot, and reverse transcriptase-polymerase chain reaction. Expression of this NOS isoform was greater in SHR than in Wistar-Kyoto rat preparations. Finally, endothelial NOS was observed in the endothelium, but no detectable levels of inducible NOS were found in these tissues. These results demonstrate the expression of neuronal NOS in rat vascular smooth muscle cells and its activation on stimulation by Ang II in spontaneously hypertensive, but not normotensive, animals.
American Journal of Pathology | 2008
Abdelali Agouni; Anne Hélène Lagrue-Lak-Hal; Pierre Henri Ducluzeau; Hadj Ahmed Mostefai; Catherine Draunet-Busson; Georges Leftheriotis; Christophe Heymes; Maria Martinez; Ramaroson Andriantsitohaina
Microparticles are membrane vesicles that are released during cell activation and apoptosis. Elevated levels of microparticles occur in many cardiovascular diseases; therefore, we characterized circulating microparticles from both metabolic syndrome (MS) patients and healthy patients. We evaluated microparticle effects on endothelial function; however, links between circulating microparticles and endothelial dysfunction have not yet been demonstrated. Circulating microparticles and their cellular origins were examined by flow cytometry of blood samples from patients and healthy subjects. Microparticles were used either to treat human endothelial cells in vitro or to assess endothelium function in mice after intravenous injection. MS patients had increased circulating levels of microparticles compared with healthy patients, including microparticles from platelet, endothelial, erythrocyte, and procoagulant origins. In vitro treatment of endothelial cells with microparticles from MS patients reduced both nitric oxide (NO) and superoxide anion production, resulting in protein tyrosine nitration. These effects were associated with enhanced phosphorylation of endothelial NO synthase at the site of inhibition. The reduction of O2(-) was linked to both reduced expression of p47 phox of NADPH oxidase and overexpression of extracellular superoxide dismutase. The decrease in NO production was triggered by nonplatelet-derived microparticles. In vivo injection of MS microparticles into mice impaired endothelium-dependent relaxation and decreased endothelial NO synthase expression. These data provide evidence that circulating microparticles from MS patients influence endothelial dysfunction.
Circulation Research | 2008
Mélanie Métrich; Alexandre Lucas; Monique Gastineau; Jane-Lise Samuel; Christophe Heymes; Eric Morel; Frank Lezoualc’h
Cardiac hypertrophy is promoted by adrenergic overactivation and can progress to heart failure, a leading cause of mortality worldwide. Although cAMP is among the most well-known signaling molecules produced by &bgr;-adrenergic receptor stimulation, its mechanism of action in cardiac hypertrophy is not fully understood. The identification of Epac (exchange protein directly activated by cAMP) proteins as novel sensors for cAMP has broken the dogma surrounding cAMP and protein kinase A. However, their role and regulation in the mature heart remain to be defined. Here, we show that cardiac hypertrophy induced by thoracic aortic constriction increases Epac1 expression in rat myocardium. Adult ventricular myocytes isolated from banded animals display an exaggerated cellular growth in response to Epac activation. At the molecular level, Epac1 hypertrophic effects are independent of its classic effector, Rap1, but rather involve the small GTPase Ras, the phosphatase calcineurin, and Ca2+/calmodulin-dependent protein kinase II. Importantly, we find that in response to &bgr;-adrenergic receptor stimulation, Epac1 activates Ras and induces adult cardiomyocyte hypertrophy in a cAMP-dependent but protein kinase A–independent manner. Knockdown of Epac1 strongly reduces &bgr;-adrenergic receptor–induced hypertrophic program. Finally, we report for the first time that Epac1 is mainly expressed in human heart as compared with Epac2 isoform and is increased in heart failure. Taken together, our data demonstrate that the guanine nucleotide exchange factor Epac1 contributes to the hypertrophic effect of &bgr;-adrenergic receptor in a protein kinase A–independent fashion and may, therefore, represent a novel therapeutic target for the treatment of cardiac disorders.
Circulation | 1999
Christophe Heymes; Marc Vanderheyden; Jean G.F. Bronzwaer; Ajay M. Shah; Walter J. Paulus
BACKGROUND Patients with heart failure have modified myocardial expression of nitric oxide synthase (NOS), as is evident from induction of calcium-insensitive NOS isoforms. The functional significance of this modified NOS gene expression for left ventricular (LV) contractile performance was investigated in patients with dilated nonischemic cardiomyopathy. METHODS AND RESULTS In patients with dilated, nonischemic cardiomyopathy, invasive measures of LV contractile performance were derived from LV microtip pressure recordings and angiograms and correlated with intensity of gene expression of inducible (NOS2) and constitutive (NOS3) NOS isoforms in simultaneously procured LV endomyocardial biopsies (n=20). LV endomyocardial expression of NOS2 was linearly correlated with LV stroke volume (P=0.001; r=0.66), LV ejection fraction (P=0.007; r=0.58), and LV stroke work (P=0.003; r=0.62). In patients with elevated LV end-diastolic pressure (>16 mm Hg), a closer correlation was observed between endomyocardial expression of NOS2 and LV stroke volume (P=0.001; r=0.74), LV ejection fraction (P=0.0007; r=0.77), and LV stroke work (r=0.82; P=0.0002). LV endomyocardial expression of NOS3 was linearly correlated with LV stroke volume (P=0.01; r=0.53) and LV stroke work (P=0.01; r=0.52). To establish the role of nitric oxide (NO) as a mediator of the observed correlations, substance P (which causes endothelial release of NO) was infused intracoronarily (n=12). In patients with elevated LV end-diastolic pressure, an intracoronary infusion of substance P increased LV stroke volume from 72+/-13 to 91+/-16 mL (P=0.06) and LV stroke work from 67+/-11 to 90+/-15 g. m (P=0.03) and shifted the LV end-diastolic pressure-volume relation to the right. CONCLUSIONS In patients with dilated cardiomyopathy, an increase in endomyocardial NOS2 or NOS3 gene expression augments LV stroke volume and LV stroke work because of a NO-mediated rightward shift of the diastolic LV pressure-volume relation and a concomitant increase in LV preload reserve.