Christophe Hurter
École nationale de l'aviation civile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Hurter.
IEEE Transactions on Visualization and Computer Graphics | 2009
Christophe Hurter; Benjamin Tissoires; Stéphane Conversy
When displaying thousands of aircraft trajectories on a screen, the visualization is spoiled by a tangle of trails. The visual analysis is therefore difficult, especially if a specific class of trajectories in an erroneous dataset has to be studied. We designed FromDaDy, a trajectory visualization tool that tackles the difficulties of exploring the visualization of multiple trails. This multidimensional data exploration is based on scatterplots, brushing, pick and drop, juxtaposed views and rapid visual design. Users can organize the workspace composed of multiple juxtaposed views. They can define the visual configuration of the views by connecting data dimensions from the dataset to Bertins visual variables. They can then brush trajectories, and with a pick and drop operation they can spread the brushed information across views. They can then repeat these interactions, until they extract a set of relevant data, thus formulating complex queries. Through two real-world scenarios, we show how FromDaDy supports iterative queries and the extraction of trajectories in a dataset that contains up to 5 million data.
ieee visualization | 2011
Ozan Ersoy; Christophe Hurter; Fernando Vieira Paulovich; Gabriel Cantareiro; Alexandru Telea
In this paper, we present a novel approach for constructing bundled layouts of general graphs. As layout cues for bundles, we use medial axes, or skeletons, of edges which are similar in terms of position information. We combine edge clustering, distance fields, and 2D skeletonization to construct progressively bundled layouts for general graphs by iteratively attracting edges towards the centerlines of level sets of their distance fields. Apart from clustering, our entire pipeline is image-based with an efficient implementation in graphics hardware. Besides speed and implementation simplicity, our method allows explicit control of the emphasis on structure of the bundled layout, i.e. the creation of strongly branching (organic-like) or smooth bundles. We demonstrate our method on several large real-world graphs.
visual analytics science and technology | 2011
Gennady L. Andrienko; Natalia V. Andrienko; Christophe Hurter; Salvatore Rinzivillo; Stefan Wrobel
We propose a visual analytics procedure for analyzing movement data, i.e., recorded tracks of moving objects. It is oriented to a class of problems where it is required to determine significant places on the basis of certain types of events occurring repeatedly in movement data. The procedure consists of four major steps: (1) event extraction from trajectories; (2) event clustering and extraction of relevant places; (3) spatio-temporal aggregation of events or trajectories; (4) analysis of the aggregated data. All steps are scalable with respect to the amount of the data under analysis. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales.
eurographics | 2012
Christophe Hurter; Ozan Ersoy; Alexandru Telea
We present a fast and simple method to compute bundled layouts of general graphs. For this, we first transform a given graph drawing into a density map using kernel density estimation. Next, we apply an image sharpening technique which progressively merges local height maxima by moving the convolved graph edges into the height gradient flow. Our technique can be easily and efficiently implemented using standard graphics acceleration techniques and produces graph bundlings of similar appearance and quality to state‐of‐the‐art methods at a fraction of the cost. Additionally, we show how to create bundled layouts constrained by obstacles and use shading to convey information on the bundling quality. We demonstrate our method on several large graphs.
eurographics | 2014
Benjamin Bach; Pierre Dragicevic; Daniel W. Archambault; Christophe Hurter; Sheelagh Carpendale
We review a range of temporal data visualization techniques through a new lens, by describing them as series of op- erations performed on a conceptual space-time cube. These operations include extracting subparts of a space-time cube, flattening it across space or time, or transforming the cubes geometry or content. We introduce a taxonomy of elementary space-time cube operations, and explain how they can be combined to turn a three-dimensional space-time cube into an easily-readable two-dimensional visualization. Our model captures most visualizations showing two or more data dimensions in addition to time, such as geotemporal visualizations, dynamic networks, time-evolving scatterplots, or videos. We finally review interactive systems that support a range of operations. By introducing this conceptual framework we hope to facilitate the description, criticism and comparison of existing temporal data visualizations, as well as encourage the exploration of new techniques and systems.
ieee visualization | 2011
Christophe Hurter; Ozan Ersoy; Alexandru Telea
We present MoleView, a novel technique for interactive exploration of multivariate relational data. Given a spatial embedding of the data, in terms of a scatter plot or graph layout, we propose a semantic lens which selects a specific spatial and attribute-related data range. The lens keeps the selected data in focus unchanged and continuously deforms the data out of the selection range in order to maintain the context around the focus. Specific deformations include distance-based repulsion of scatter plot points, deforming straight-line node-link graph drawings, and as varying the simplification degree of bundled edge graph layouts. Using a brushing-based technique, we further show the applicability of our semantic lens for scenarios requiring a complex selection of the zones of interest. Our technique is simple to implement and provides real-time performance on large datasets. We demonstrate our technique with actual data from air and road traffic control, medical imaging, and software comprehension applications.
IEEE Transactions on Visualization and Computer Graphics | 2013
Gennady L. Andrienko; Natalia V. Andrienko; Christophe Hurter; Salvatore Rinzivillo; Stefan Wrobel
Place-oriented analysis of movement data, i.e., recorded tracks of moving objects, includes finding places of interest in which certain types of movement events occur repeatedly and investigating the temporal distribution of event occurrences in these places and, possibly, other characteristics of the places and links between them. For this class of problems, we propose a visual analytics procedure consisting of four major steps: 1) event extraction from trajectories; 2) extraction of relevant places based on event clustering; 3) spatiotemporal aggregation of events or trajectories; 4) analysis of the aggregated data. All steps can be fulfilled in a scalable way with respect to the amount of the data under analysis; therefore, the procedure is not limited by the size of the computers RAM and can be applied to very large data sets. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales.
IEEE Transactions on Visualization and Computer Graphics | 2014
Christophe Hurter; Ozan Ersoy; Sara Irina Fabrikant; Tijmen R. Klein; Alexandru Telea
Depicting change captured by dynamic graphs and temporal paths, or trails, is hard. We present two techniques for simplified visualization of such data sets using edge bundles. The first technique uses an efficient image-based bundling method to create smoothly changing bundles from streaming graphs. The second technique adds edge-correspondence data atop of any static bundling algorithm, and is best suited for graph sequences. We show how these techniques can produce simplified visualizations of streaming and sequence graphs. Next, we show how several temporal attributes can be added atop of our dynamic graphs. We illustrate our techniques with data sets from aircraft monitoring, software engineering, and eye-tracking of static and dynamic scenes.
IEEE Transactions on Visualization and Computer Graphics | 2016
Roeland Scheepens; Christophe Hurter; Huub van de Wetering; Jarke J. van Wijk
Visualization of the trajectories of moving objects leads to dense and cluttered images, which hinders exploration and understanding. It also hinders adding additional visual information, such as direction, and makes it difficult to interactively extract traffic flows, i.e., subsets of trajectories. In this paper we present our approach to visualize traffic flows and provide interaction tools to support their exploration. We show an overview of the traffic using a density map. The directions of traffic flows are visualized using a particle system on top of the density map. The user can extract traffic flows using a novel selection widget that allows for the intuitive selection of an area, and filtering on a range of directions and any additional attributes. Using simple, visual set expressions, the user can construct more complicated selections. The dynamic behaviors of selected flows may then be shown in annotation windows in which they can be interactively explored and compared. We validate our approach through use cases where we explore and analyze the temporal behavior of aircraft and vessel trajectories, e.g., landing and takeoff sequences, or the evolution of flight route density. The aircraft use cases have been developed and validated in collaboration with domain experts.
human factors in computing systems | 2015
Fereshteh Amini; Nathalie Henry Riche; Bongshin Lee; Christophe Hurter; Pourang Irani
Data videos, motion graphics that incorporate visualizations about facts, are increasingly gaining popularity as a means of telling stories with data. However, very little is systematically recorded about (a) what elements are featured in data videos and (b) the processes used to create them. In this article, we provide initial insights to build this knowledge. We first report on a qualitative analysis of 50 professionally designed data videos, extracting and exposing their most salient constituents. Second, we report on a series of workshops with experienced storytellers from cinematography, graphics design and screenplay writing. We provided them with a set of data facts and visualizations and observed them create storyboards for data videos. From these exploratory studies, we derive broader implications for the design of an authoring tool to enable a wide audience to create data videos. Our findings highlight the importance of providing a flexible tool supporting a non-linear creation process and allowing users to iteratively go back to different phases of the process.