Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe L. M. J. Verlinde is active.

Publication


Featured researches published by Christophe L. M. J. Verlinde.


Structure | 1994

Structure-based drug design: progress, results and challenges

Christophe L. M. J. Verlinde; Wim G. J. Hol

Protein structure-based drug design is rapidly gaining momentum. The new opportunities, developments and results in this field are almost unbelievable compared with the situation less than a decade ago.


Nature Reviews Drug Discovery | 2008

Genomic-scale prioritization of drug targets: the TDR Targets database

Fernán Agüero; Bissan Al-Lazikani; Martin Aslett; Matthew Berriman; Frederick S. Buckner; Robert K. Campbell; Santiago J. Carmona; Ian M. Carruthers; A.W. Edith Chan; Feng Chen; Gregory J. Crowther; Maria A. Doyle; Christiane Hertz-Fowler; Andrew L. Hopkins; Gregg McAllister; Solomon Nwaka; John P. Overington; Arnab Pain; Gaia V. Paolini; Ursula Pieper; Stuart A. Ralph; Aaron Riechers; David S. Roos; Andrej Sali; Dhanasekaran Shanmugam; Takashi Suzuki; Wesley C. Van Voorhis; Christophe L. M. J. Verlinde

The increasing availability of genomic data for pathogens that cause tropical diseases has created new opportunities for drug discovery and development. However, if the potential of such data is to be fully exploited, the data must be effectively integrated and be easy to interrogate. Here, we discuss the development of the TDR Targets database (http://tdrtargets.org), which encompasses extensive genetic, biochemical and pharmacological data related to tropical disease pathogens, as well as computationally predicted druggability for potential targets and compound desirability information. By allowing the integration and weighting of this information, this database aims to facilitate the identification and prioritization of candidate drug targets for pathogens.


American Journal of Human Genetics | 2003

Missense Mutations in the Regulatory Domain of PKCγ: A New Mechanism for Dominant Nonepisodic Cerebellar Ataxia

Dong Hui Chen; Zoran Brkanac; Christophe L. M. J. Verlinde; Xiao Jian Tan; Laura Bylenok; David Nochlin; Mark Matsushita; Hillary P. Lipe; John Wolff; Magali Fernandez; Patrick J. Cimino; Bird Td; Wendy H. Raskind

We report a nonepisodic autosomal dominant (AD) spinocerebellar ataxia (SCA) not caused by a nucleotide repeat expansion that is, to our knowledge, the first such SCA. The AD SCAs currently comprise a group of > or =16 genetically distinct neurodegenerative conditions, all characterized by progressive incoordination of gait and limbs and by speech and eye-movement disturbances. Six of the nine SCAs for which the genes are known result from CAG expansions that encode polyglutamine tracts. Noncoding CAG, CTG, and ATTCT expansions are responsible for three other SCAs. Approximately 30% of families with SCA do not have linkage to the known loci. We recently mapped the locus for an AD SCA in a family (AT08) to chromosome 19q13.4-qter. A particularly compelling candidate gene, PRKCG, encodes protein kinase C gamma (PKC gamma), a member of a family of serine/threonine kinases. The entire coding region of PRKCG was sequenced in an affected member of family AT08 and in a group of 39 unrelated patients with ataxia not attributable to trinucleotide expansions. Three different nonconservative missense mutations in highly conserved residues in C1, the cysteine-rich region of the protein, were found in family AT08, another familial case, and a sporadic case. The mutations cosegregated with disease in both families. Structural modeling predicts that two of these amino acid substitutions would severely abrogate the zinc-binding or phorbol ester-binding capabilities of the protein. Immunohistochemical studies on cerebellar tissue from an affected member of family AT08 demonstrated reduced staining for both PKC gamma and ataxin 1 in Purkinje cells, whereas staining for calbindin was preserved. These results strongly support a new mechanism for neuronal cell dysfunction and death in hereditary ataxias and suggest that there may be a common pathway for PKC gamma-related and polyglutamine-related neurodegeneration.


Nature Structural & Molecular Biology | 2010

Toxoplasma gondii calcium-dependent protein kinase 1 is a target for selective kinase inhibitors.

Kayode K. Ojo; Eric T. Larson; Katelyn R. Keyloun; Lisa J. Castaneda; Amy E. DeRocher; Krishna K Inampudi; Jessica E. Kim; Tracy L. Arakaki; Ryan C. Murphy; Li Zhang; Alberto J. Napuli; Dustin J. Maly; Christophe L. M. J. Verlinde; Frederick S. Buckner; Marilyn Parsons; Wim G. J. Hol; Ethan A. Merritt; Wesley C. Van Voorhis

New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to BKIs. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable.


Current Opinion in Structural Biology | 2000

AB5 toxins: structures and inhibitor design

Erkang Fan; Ethan A. Merritt; Christophe L. M. J. Verlinde; Wim G. J. Hol

High-resolution crystal structures of AB(5) toxins in their native form or in complex with a variety of ligands have led to the structure-based design and discovery of inhibitors targeting different areas of the toxins. The most significant progress is the development of highly potent multivalent ligands that block binding of the toxins to their receptors.


Visual Neuroscience | 2000

Rod and cone visual cycle consequences of a null mutation in the 11- cis -retinol dehydrogenase gene in man

Artur V. Cideciyan; Françoise Haeseleer; Robert N. Fariss; Tomas S. Aleman; Geeng Fu Jang; Christophe L. M. J. Verlinde; Michael F. Marmor; Samuel G. Jacobson; Krzysztof Palczewski

Vertebrate vision starts with photoisomerization of the 11-cis-retinal chromophore to all-trans-retinal. Biosynthesis of 11-cis-retinal is required to maintain vision. A key enzyme catalyzing the oxidation of 11-cis-retinol is 11-cis-retinol dehydrogenase (11-cis-RDH), which is encoded by the RDH5 gene. 11-cis-RDH is expressed in the RPE and not in the neural retina. The consequences of a lack of 11-cis-RDH were studied in a family with fundus albipunctatus. We identified the causative novel RDH5 mutation, Arg157Trp, that replaces an amino acid residue conserved among short-chain alcohol dehydrogenases. Three-dimensional structure modeling and in vitro experiments suggested that this mutation destabilizes proper folding and inactivates the enzyme. Studies using RPE membranes indicated the existence of an alternative oxidizing system for the production of 11-cis-retinal. In vivo visual consequences of this null mutation showed complex kinetics of dark adaptation. Rod and cone resensitization was extremely delayed following full bleaches; unexpectedly, the rate of cone recovery was slower than rods. Cones showed a biphasic recovery with an initial rapid component and an elevated final threshold. Other unanticipated results included normal rod recovery following 0.5% bleach and abnormal recovery following bleaches in the 2-12% range. These intermediate bleaches showed rapid partial recovery of rods with transitory plateaux. Pathways in addition to 11-cis-RDH likely provide 11-cis-retinal for rods and cones and can maintain normal kinetics of visual recovery but only under certain constraints and less efficiently for cone than rod function.


Structure | 1995

Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors

Xiayang Qiu; Christophe L. M. J. Verlinde; Suping Zhang; Michael P. Schmitt; Randall K. Holmes; Wim G. J. Hol

BACKGROUND When Corynebacterium diphtheriae encounters an environment with a low concentration of iron ions, it initiates the synthesis of several virulence factors, including diphtheria toxin. The diphtheria toxin repressor (DtxR) plays a key role in this iron-dependent, global regulatory system and is the prototype for a new family of iron-dependent repressor proteins in Gram-positive bacteria. This study aimed to increase understanding of the general regulatory principles of cation binding to DtxR. RESULTS The crystal structure of dimeric DtxR holo-repressor in complex with different transition metals shows that each subunit comprises an amino-terminal DNA-binding domain, an interface domain (which contains two metal-binding sites) and a third, very flexible carboxy-terminal domain. Each DNA-binding domain contains a helix-turn-helix motif and has a topology which is very similar to catabolite gene activator protein (CAP). Molecular modeling suggests that bound DNA adopts a bent conformation with helices alpha 3 of DtxR interacting with the major grooves. The two metal-binding sites lie approximately 10 A apart. Binding site 2 is positioned at a potential hinge region between the DNA-binding and interface domains. Residues 98-108 appear to be crucial for the functioning of the repressor; these provide four of the ligands of the two metal-binding sites and three residues at the other side of the helix which are at the heart of the dimer interface. CONCLUSIONS The crystal structure of the DtxR holorepressor suggests that the divalent cation co-repressor controls motions of the DNA-binding domain. In this way the metal co-repressor governs the distance between operator recognition elements in the two subunits and, consequently, DNA recognition.


Journal of Medicinal Chemistry | 2009

Rational Modification of a Candidate Cancer Drug for Use Against Chagas Disease

James M. Kraus; Christophe L. M. J. Verlinde; Mandana Karimi; Galina I. Lepesheva; Michael H. Gelb; Frederick S. Buckner

Chagas disease is one of the major neglected diseases of the world. Existing drug therapies are limited, ineffective, and highly toxic. We describe a novel strategy of drug discovery of adapting an existing clinical compound with excellent pharmaceutical properties to target a pathogenic organism. The protein farnesyltransferase (PFT) inhibitor tipifarnib, now in phase III anticancer clinical trials, was previously found to kill Trypanosoma cruzi by blocking sterol 14 alpha-demethylase (14DM). We rationally developed tipifarnib analogues that display reduced affinity for human PFT to reduce toxicity while increasing affinity for parasite 14DM. The lead compound has picomolar activity against cultured T. cruzi and is efficacious in a mouse model of acute Chagas disease.


Journal of Clinical Investigation | 2012

Transmission of malaria to mosquitoes blocked by bumped kinase inhibitors

Kayode K. Ojo; Claudia Pfander; Natascha Mueller; Charlotte Burstroem; Eric T. Larson; Cassie M. Bryan; Anna M. W. Fox; Molly C. Reid; Steven M. Johnson; Ryan C. Murphy; Mark Kennedy; Henning Mann; David J. Leibly; Stephen N. Hewitt; Christophe L. M. J. Verlinde; Stefan H. I. Kappe; Ethan A. Merritt; Dustin J. Maly; Oliver Billker; Wesley C. Van Voorhis

Effective control and eradication of malaria will require new tools to prevent transmission. Current antimalarial therapies targeting the asexual stage of Plasmodium do not prevent transmission of circulating gametocytes from infected humans to mosquitoes. Here, we describe a new class of transmission-blocking compounds, bumped kinase inhibitors (BKIs), which inhibit microgametocyte exflagellation. Oocyst formation and sporozoite production, necessary for transmission to mammals, were inhibited in mosquitoes fed on either BKI-1-treated human blood or mice treated with BKI-1. BKIs are hypothesized to act via inhibition of Plasmodium calcium-dependent protein kinase 4 and predicted to have little activity against mammalian kinases. Our data show that BKIs do not inhibit proliferation of mammalian cell lines and are well tolerated in mice. Used in combination with drugs active against asexual stages of Plasmodium, BKIs could prove an important tool for malaria control and eradication.


Journal of Virology | 2007

Identification of CD46 Binding Sites within the Adenovirus Serotype 35 Fiber Knob

Hongjie Wang; Yen Chywan Liaw; Daniel Stone; Oleksandr Kalyuzhniy; Imameddin Amiraslanov; Sebastian Tuve; Christophe L. M. J. Verlinde; Dmitry M. Shayakhmetov; Thilo Stehle; Steve R. Roffler; André Lieber

ABSTRACT Species B human adenoviruses (Ads) are often associated with fatal illnesses in immunocompromised individuals. Recently, species B Ads, most of which use the ubiquitously expressed complement regulatory protein CD46 as a primary attachment receptor, have gained interest for use as gene therapy vectors. In this study, we focused on species B Ad serotype 35 (Ad35), whose trimeric fiber knob domain binds to three CD46 molecules with a KD (equilibrium dissociation constant) of 15.5 nM. To study the Ad35 knob-CD46 interaction, we generated an expression library of Ad35 knobs with random mutations and screened it for CD46 binding. We identified four critical residues (Phe242, Arg279, Ser282, and Glu302) which, when mutated, ablated Ad35 knob binding to CD46 without affecting knob trimerization. The functional importance of the identified residues was validated in surface plasmon resonance and competition binding studies. To model the Ad35 knob-CD46 interaction, we resolved the Ad35 knob structure at 2-Å resolution by X-ray crystallography and overlaid it onto the existing structure for Ad11-CD46 interaction. According to our model, all identified Ad35 residues are in regions that interact with CD46, whereby one CD46 molecule binds between two knob monomers. This mode of interaction might have potential consequences for CD46 signaling and intracellular trafficking of Ad35. Our findings are also fundamental for better characterization of species B Ads and design of antiviral drugs, as well as for application of species B Ads as in vivo and in vitro gene transfer vectors.

Collaboration


Dive into the Christophe L. M. J. Verlinde's collaboration.

Top Co-Authors

Avatar

Wim G. J. Hol

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erkang Fan

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ethan A. Merritt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Zucker

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge