Christophe Lacroix
Biotechnology Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christophe Lacroix.
The American Journal of Clinical Nutrition | 2010
Michael B. Zimmermann; Christophe Chassard; Fabian Rohner; Eliézer K. N'Goran; Charlemagne Nindjin; Alexandra Dostal; Jürg Utzinger; Hala Ghattas; Christophe Lacroix; Richard F. Hurrell
BACKGROUND Iron is essential for the growth and virulence of many pathogenic enterobacteria, whereas beneficial barrier bacteria, such as lactobacilli, do not require iron. Thus, increasing colonic iron could select gut microbiota for humans that are unfavorable to the host. OBJECTIVE The objective was to determine the effect of iron fortification on gut microbiota and gut inflammation in African children. DESIGN In a 6-mo, randomized, double-blind, controlled trial, 6-14-y-old Ivorian children (n = 139) received iron-fortified biscuits, which contained 20 mg Fe/d, 4 times/wk as electrolytic iron or nonfortifoed biscuits. We measured changes in hemoglobin concentrations, inflammation, iron status, helminths, diarrhea, fecal calprotectin concentrations, and microbiota diversity and composition (n = 60) and the prevalence of selected enteropathogens. RESULTS At baseline, there were greater numbers of fecal enterobacteria than of lactobacilli and bifidobacteria (P < 0.02). Iron fortification was ineffective; there were no differences in iron status, anemia, or hookworm prevalence at 6 mo. The fecal microbiota was modified by iron fortification as shown by a significant increase in profile dissimilarity (P < 0.0001) in the iron group as compared with the control group. There was a significant increase in the number of enterobacteria (P < 0.005) and a decrease in lactobacilli (P < 0.0001) in the iron group after 6 mo. In the iron group, there was an increase in the mean fecal calprotectin concentration (P < 0.01), which is a marker of gut inflammation, that correlated with the increase in fecal enterobacteria (P < 0.05). CONCLUSIONS Anemic African children carry an unfavorable ratio of fecal enterobacteria to bifidobacteria and lactobacilli, which is increased by iron fortification. Thus, iron fortification in this population produces a potentially more pathogenic gut microbiota profile, and this profile is associated with increased gut inflammation. This trial was registered at controlled-trials.com as ISRCTN21782274.
Gut | 2015
Tanja Jaeggi; Guus A. M. Kortman; Diego Moretti; Christophe Chassard; Penny Holding; Alexandra Dostal; Jos Boekhorst; Harro M. Timmerman; Dorine W. Swinkels; Harold Tjalsma; Jane Njenga; Alice M Mwangi; Jane Kvalsvig; Christophe Lacroix; Michael B. Zimmermann
Background In-home iron fortification for infants in developing countries is recommended for control of anaemia, but low absorption typically results in >80% of the iron passing into the colon. Iron is essential for growth and virulence of many pathogenic enterobacteria. We determined the effect of high and low dose in-home iron fortification on the infant gut microbiome and intestinal inflammation. Methods We performed two double-blind randomised controlled trials in 6-month-old Kenyan infants (n=115) consuming home-fortified maize porridge daily for 4 months. In the first, infants received a micronutrient powder (MNP) containing 2.5 mg iron as NaFeEDTA or the MNP without iron. In the second, they received a different MNP containing 12.5 mg iron as ferrous fumarate or the MNP without the iron. The primary outcome was gut microbiome composition analysed by 16S pyrosequencing and targeted real-time PCR (qPCR). Secondary outcomes included faecal calprotectin (marker of intestinal inflammation) and incidence of diarrhoea. We analysed the trials separately and combined. Results At baseline, 63% of the total microbial 16S rRNA could be assigned to Bifidobacteriaceae but there were high prevalences of pathogens, including Salmonella Clostridium difficile, Clostridium perfringens, and pathogenic Escherichia coli. Using pyrosequencing, +FeMNPs increased enterobacteria, particularly Escherichia/Shigella (p=0.048), the enterobacteria/bifidobacteria ratio (p=0.020), and Clostridium (p=0.030). Most of these effects were confirmed using qPCR; for example, +FeMNPs increased pathogenic E. coli strains (p=0.029). +FeMNPs also increased faecal calprotectin (p=0.002). During the trial, 27.3% of infants in +12.5 mgFeMNP required treatment for diarrhoea versus 8.3% in −12.5 mgFeMNP (p=0.092). There were no study-related serious adverse events in either group. Conclusions In this setting, provision of iron-containing MNPs to weaning infants adversely affects the gut microbiome, increasing pathogen abundance and causing intestinal inflammation. Trial registration number NCT01111864.
Applied Microbiology and Biotechnology | 2004
S. Vollenweider; Christophe Lacroix
Abstract3-Hydroxypropionaldehyde (3-HPA) forms, together with HPA-hydrate and HPA-dimer, a dynamic, multi-component system (HPA system) used in food preservation, as a precursor for many modern chemicals such as acrolein, acrylic acid, and 1,3-propanediol (1,3-PDO), and for polymer production. 3-HPA can be obtained both through traditional chemistry and bacterial fermentation. To date, 3-HPA has been produced from petrochemical resources as an intermediate in 1,3-PDO production. In vivo, glycerol is converted in one enzymatic step into 3-HPA. The 3-HPA-producing Lactobacillus reuteri is used as a probiotic in the health care of humans and animals. The biotechnological production of 3-HPA from renewable resources is desirable both for use of 3-HPA in foods and for the production of bulk chemicals. The main challenge will be the efficient production and recovery of pure 3-HPA.
Environmental Microbiology | 2014
Ted Jost; Christophe Lacroix; Christian Braegger; Florence Rochat; Christophe Chassard
Breast milk has recently been recognized as source of commensal and potential probiotic bacteria. The present study investigated whether viable strains of gut-associated obligate anaerobes are shared between the maternal and neonatal gut ecosystem via breastfeeding. Maternal faeces, breast milk and corresponding neonatal faeces collected from seven mothers-neonate pairs at three neonatal sampling points were analyzed by culture-independent (pyrosequencing) and culture-dependent methods (16S rRNA gene sequencing, pulsed field gel electrophoresis, random amplified polymorphic DNA and repetitive extragenic palindromic polymerase chain reaction. Pyrosequencing allowed identifying gut-associated obligate anaerobic genera, like Bifidobacterium, Bacteroides, Parabacteroides and members of the Clostridia (Blautia, Clostridium, Collinsella and Veillonella) shared between maternal faeces, breast milk and neonatal faeces. Using culture, a viable strain of Bifidobacterium breve was shown to be shared between all three ecosystems within one mother-neonate pair. Furthermore, pyrosequencing revealed that several butyrate-producing members of the Clostridia (Coprococcus, Faecalibacterium, Roseburia and Subdoligranulum) were shared between maternal faeces and breast milk. This study shows that (viable) obligate gut-associated anaerobes may be vertically transferred from mother to neonate via breastfeeding. Thus, our data support the recently suggested hypothesis of a novel way of mother-neonate communication, in which maternal gut bacteria reach breast milk via an entero-mammary pathway to influence neonatal gut colonization and maturation of the immune system.
PLOS ONE | 2012
Ted Jost; Christophe Lacroix; Christian Braegger; Christophe Chassard
The establishment of a pioneer gut microbiota is increasingly recognized as a crucial stage in neonatal development influencing health throughout life. While current knowledge is mainly based on either culture or molecular analysis of feces, we opted for a comprehensive approach complementing culture with state-of-the-art molecular methods. The bacterial composition in feces from seven healthy vaginally-delivered, breast-fed neonates was analyzed at days 4–6, 9–14 and 25–30 postnatal, using culture, 16S rRNA gene sequencing of isolates, quantitative PCR and pyrosequencing. Anaerobes outnumbered facultative anaerobes in all seven neonates within the first days of life, owing to high levels of Bifidobacterium and unexpectedly also Bacteroides, which were inversely correlated. Four neonates harbored maternal Bacteroides levels, comprising typical adult species, throughout the neonatal period, while in three only subdominant levels were detected. In contrast, the major adult-type butyrate-producing anaerobic populations, Roseburia and Faecalibacterium, remained undetectable during the neonatal period. The presence of Bacteroidetes as pioneer bacteria in the majority of neonates studied demonstrates that adult-type strict anaerobes may reach adult-like population densities within the first week of life. Consequently the switch from facultative to strict anaerobes may occur earlier than previously assumed in breast-fed neonates, and the establishment of the major butyrate-producing populations may be limited by other factors than the absence of anaerobic conditions. The impact of breast milk components on the timing of establishment of anaerobic pioneer bacteria, as well as opportunistic pathogens should be further studied in regard to priming of the gut-associated immune system and consequences on later health.
International Dairy Journal | 2003
R Laridi; E. Kheadr; Regis-Olivier Benech; Jean-Christophe Vuillemard; Christophe Lacroix; I. Fliss
Liposomes prepared from different proliposomes (Pro-lipo® H, Pro-lipo® S, Pro-lipo® C and Pro-lipo® DUO) were tested for their capacity to encapsulate nisin Z. Factors affecting the entrapment process (pH and concentration of nisin Z solution and cholesterol concentration in the lipid membranes) were optimized. The use of nisin Z monoclonal antibodies made it possible to quantify, using a competitive enzyme immunoassay, and visualize, using transmission electron microscopy, nisin Z. Nisin Z was entrapped in different liposomes with encapsulation efficiencies (EE) ranging from 9.5% to 47%. The pH of nisin Z aqueous solution and nisin Z concentration had a significant effect on the amount of encapsulated nisin. An increase in cholesterol content in lipid membranes up to (20%, w/w) resulted in a slight reduction in EE. Nisin-loaded vesicles did not severely disturb Cheddar cheese fermentation and showed stability to Cheddar cheese temperature cycle. Long term stability of liposome-encapsulated nisin Z was demonstrated for 27 days at 4°C in different media including milk with different fat levels (3.25%, 2.0% and 1.0%), skim milk, sweet whey and phosphate buffer saline (PBS). Liposome stability determined as the quantity of released nisin Z was highest in milk followed by PBS and whey, respectively.
Antimicrobial Agents and Chemotherapy | 2000
Marilaine Mota-Meira; Gisèle LaPointe; Christophe Lacroix; Marc C. Lavoie
ABSTRACT Peptide antibiotics, particularly lantibiotics, are good candidates for replacing antibiotics to which bacteria have become resistant. In order to compare two such lantibiotics with two antibiotics, the MICs of nisin A, mutacin B-Ny266, vancomycin, and oxacillin against various bacterial pathogens were determined. The results indicate that nisin A and mutacin B-Ny266 are as active as vancomycin and oxacillin against most of the strains tested. Furthermore, mutacin B-Ny266 remains active against strains that are resistant to nisin A, oxacillin, or vancomycin. The wide spectrum of activity of mutacin B-Ny266, its low MICs against bacterial pathogens, and its activity against bacteria resistant to other inhibitors support the development of this substance for therapeutic use.
British Journal of Nutrition | 2013
Ted Jost; Christophe Lacroix; Christian Braegger; Christophe Chassard
Initial neonatal gut colonisation is a crucial stage for developing a healthy physiology, beneficially influenced by breast-feeding. Breast milk has been shown not only to provide nutrients and bioactive/immunological compounds, but also commensal bacteria, including gut-associated anaerobic Bifidobacterium spp. The aim of the present study was to investigate bacterial diversity in breast milk, with emphasis on identifying gut-associated obligate anaerobes. Breast milk collected from seven mothers at three sampling points (days 3-6, 9-14 and 25-30 postpartum) was analysed by combined culture-dependent and state-of-the-art, culture-independent methods (Sanger sequencing and 454-pyrosequencing). In addition to the predominance of facultative anaerobes such as Staphylococcus, Streptococcus and Propionibacterium (>90% of isolated strains and 23·7% relative abundance using pyrosequencing), significant populations of obligate anaerobes, including Bifidobacterium and Veillonella, were detected using pyrosequencing and confirmed by the isolation of viable strains (3·4% of isolates and 1·4% relative abundance). Pyrosequencing also revealed the presence of DNA of multiple major gut-associated obligate anaerobes (6·2% relative abundance) such as Bacteroides and, for the first time, several members of the Clostridia, including butyrate producers, such as Faecalibacterium and Roseburia, which are important for colonic health. The present study suggests that breast milk may be a major source of bacterial diversity to the neonatal gut, including gut-associated obligate anaerobes, and may thus significantly influence gut colonisation and maturation of the immune system.
BMC Microbiology | 2007
Valentine Cleusix; Christophe Lacroix; Sabine Vollenweider; Marc Duboux; Gwenaelle Le Blay
BackgroundReuterin produced from glycerol by Lactobacillus reuteri, a normal inhabitant of the human intestine, is a broad-spectrum antimicrobial agent. It has been postulated that reuterin could play a role in the probiotic effects of Lb. reuteri. Reuterin is active toward enteropathogens, yeasts, fungi, protozoa and viruses, but its effect on commensal intestinal bacteria is unknown. Moreover reuterins mode of action has not yet been elucidated. Glutathione, a powerful antioxidant, which also plays a key role in detoxifying reactive aldehydes, protects certain bacteria from oxidative stress, and could also be implicated in resistance to reuterin.The aim of this work was to test the activity of reuterin against a representative panel of intestinal bacteria and to study a possible correlation between intracellular low molecular weight thiols (LMW-SH) such as glutathione, hydrogen peroxide and/or reuterin sensitivity. Reuterin was produced by Lb. reuteri SD2112 in pure glycerol solution, purified and used to test the minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC). Hydrogen peroxide sensitivity and intracellular LMW-SH concentration were also analysed.ResultsOur data showed that most tested intestinal bacteria showed MIC below that for a sensitive indicator Escherichia coli (7.5–15 mM). Lactobacilli and Clostridium clostridioforme were more resistant with MIC ranging from 15 to 50 mM. No correlation between bacterial intracellular concentrations of LMW-SH, including glutathione, and reuterin or hydrogen peroxide sensitivities were found.ConclusionOur data showed that intestinal bacteria were very sensitive to reuterin and that their intracellular concentration of LMW-SH was not directly linked to their capacity to resist reuterin or hydrogen peroxide. This suggests that detoxification by LMW-SH such as glutathione is not a general mechanism and that other mechanisms are probably involved in bacterial tolerance to reuterin and hydrogene peroxide.
Applied and Environmental Microbiology | 2002
R.-O. Benech; E. Kheadr; R. Laridi; Christophe Lacroix; I. Fliss
ABSTRACT The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (105 to 106 CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 104 CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.