Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Mesangeau is active.

Publication


Featured researches published by Christophe Mesangeau.


Biological Psychiatry | 2011

Sigma receptor agonists: Receptor binding and effects on mesolimbic dopamine neurotransmission assessed by microdialysis

Linda Garcés-Ramírez; Jennifer L. Green; Takato Hiranita; Theresa Kopajtic; Maddalena Mereu; Alexandra M. Thomas; Christophe Mesangeau; Sanju Narayanan; Christopher R. McCurdy; Jonathan L. Katz; Gianluigi Tanda

BACKGROUND Subtypes of sigma (σ) receptors, σ₁ and σ₂, can be pharmacologically distinguished, and each may be involved in substance-abuse disorders. σ-Receptor antagonists block cocaine place conditioning and σ-receptor agonists are self-administered in rats that previously self-administered cocaine. Self-administration of abused drugs has been related to increased dopamine (DA) neurotransmission, however, σ-receptor agonist effects on mesolimbic DA are not fully characterized. METHODS Receptor-binding studies assessed affinities of σ-receptor ligands for σ-receptor subtypes and the DA transporter; effects on DA transmission in the rat nucleus accumbens shell were assessed using in vivo microdialysis. RESULTS Cocaine (.1-1.0 mg/kg intravenous [IV]), the nonselective σ(½)-receptor agonist DTG (1.0-5.6 mg/kg IV), and the selective σ₁-receptor agonist PRE-084 (.32-10 mg/kg IV) dose-dependently increased DA to ∼275%, ∼150%, and ∼160% maxima, respectively. DTG-induced stimulation of DA was antagonized by the nonselective σ(½)-receptor antagonist BD 1008 (10 mg/kg intraperitoneal [IP]) and the preferential σ₂-receptor antagonist SN 79 (1-3 mg/kg IP), but not by the preferential σ₁-receptor antagonist, BD 1063 (10-30 mg/kg IP). Neither PRE-084 nor cocaine was antagonized by BD 1063 or BD 1008. CONCLUSIONS σ-Receptor agonists stimulated DA in a brain area critical for reinforcing effects of cocaine. DTG effects on DA appear to be mediated by σ₂-receptors rather than σ₁-receptors. However, DA stimulation by cocaine or PRE-084 does not likely involve σ-receptors. The relatively low potency on DA transmission of the selective σ₁-receptor agonist, PRE-084, and its previously reported potent reinforcing effects, suggest a dopamine-independent reinforcing pathway that may contribute to substance-abuse disorders.


EBioMedicine | 2015

The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

Uyen B. Chu; Timur A. Mavlyutov; Ming-Liang Chu; Huan Yang; Amanda Schulman; Christophe Mesangeau; Christopher R. McCurdy; Lian-Wang Guo; Arnold E. Ruoho

The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.


Journal of Medicinal Chemistry | 2008

Conversion of a highly selective sigma-1 receptor-ligand to sigma-2 receptor preferring ligands with anticocaine activity

Christophe Mesangeau; Sanju Narayanan; Andrea M. Green; Jamaluddin Shaikh; Nidhi Kaushal; Eddy Viard; Yan-Tong Xu; James A. Fishback; Jacques H. Poupaert; Rae R. Matsumoto; Christopher R. McCurdy

Cocaines toxicity can be mitigated by blocking its interaction with sigma-1 receptors. The involvement of sigma-2 receptors remains unclear. To investigate their potential role, we have designed compounds through a convergent synthesis utilizing a highly selective sigma-1 ligand and elements of a selective sigma-2 ligand. Among the synthesized compounds was produced a subnanomolar sigma-2 ligand with an 11-fold preference over sigma-1 receptors. These compounds may be useful in developing effective pharmacotherapies for cocaine toxicity.


Future Medicinal Chemistry | 2011

Early development of sigma-receptor ligands

Sanju Narayanan; Rohit Bhat; Christophe Mesangeau; Jacques H. Poupaert; Christopher R. McCurdy

Sigma receptors (σ-1 and σ-2) are non-opioid proteins implicated in the pathophysiology of various neurological disorders and cancer. The σ-1 subtype is a chaperon protein widely distributed in the CNS and peripheral tissues. These receptors are involved in the modulation of K(+)- and Ca(2+)-dependent signaling cascades at the endoplasmic reticulum and modulation of neurotransmitter release. σ-1 receptors are emerging targets for the treatment of neurophychiatric diseases (schizophrenia and depression) and cocaine addiction. σ-2 receptors are lipid raft proteins. They are highly expressed on many tumor cells and hence considered potential targets for anticancer drugs. σ receptors bind to a diverse class of pharmacological compounds like cocaine, methamphetamine, benzomorphans like (±)-pentazocine, (±)-SKF-10,047 and endogenous neurosteroids and sphingolipids. In this review we focus on the early development of σ receptor-specific ligands and radiolabeling agents.


Journal of Medicinal Chemistry | 2012

New positron emission tomography (PET) radioligand for imaging σ-1 receptors in living subjects.

Michelle L. James; Bin Shen; Cristina Zavaleta; Carsten H. Nielsen; Christophe Mesangeau; Pradeep K. Vuppala; Carmel T. Chan; Bonnie A. Avery; James A. Fishback; Rae R. Matsumoto; Sanjiv S. Gambhir; Christopher R. McCurdy; Frederick T. Chin

σ-1 receptor (S1R) radioligands have the potential to detect and monitor various neurological diseases. Herein we report the synthesis, radiofluorination, and evaluation of a new S1R ligand 6-(3-fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one ([(18)F]FTC-146, [(18)F]13). [(18)F]13 was synthesized by nucleophilic fluorination, affording a product with >99% radiochemical purity (RCP) and specific activity (SA) of 2.6 ± 1.2 Ci/μmol (n = 13) at end of synthesis (EOS). Positron emission tomography (PET) and ex vivo autoradiography studies of [(18)F]13 in mice showed high uptake of the radioligand in S1R rich regions of the brain. Pretreatment with 1 mg/kg haloperidol (2), nonradioactive 13, or BD1047 (18) reduced the binding of [(18)F]13 in the brain at 60 min by 80%, 82%, and 81%, respectively, suggesting that [(18)F]13 accumulation in mouse brain represents specific binding to S1Rs. These results indicate that [(18)F]13 is a promising candidate radiotracer for further evaluation as a tool for studying S1Rs in living subjects.


European Journal of Medicinal Chemistry | 2011

Synthesis and pharmacological evaluation of indole-based sigma receptor ligands

Christophe Mesangeau; Emanuele Amata; Walid Alsharif; Michael J. Seminerio; Matthew J. Robson; Rae R. Matsumoto; Jacques H. Poupaert; Christopher R. McCurdy

A series of novel indole-based analogs were prepared and their affinities for sigma receptors were determined using in vitro radioligand binding assays. The results of this study identified several compounds with nanomolar sigma-2 affinity and significant selectivity over sigma-1 receptors. In particular, 2-(4-(3-(4-fluorophenyl)indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (9f) was found to display high affinity at sigma-2 receptors with good selectivity (σ-1/σ-2 = 395). The pharmacological binding profile for this compound was established with other relevant non-sigma sites.


Current Topics in Medicinal Chemistry | 2011

Sigma Receptors and Cocaine Abuse

Sanju Narayanan; Christophe Mesangeau; Jacques H. Poupaert; Christopher R. McCurdy

Sigma receptors have been well documented as a protein target for cocaine and have been shown to be involved in the toxic and stimulant actions of cocaine. Strategies to reduce the access of cocaine to sigma receptors have included antisense oligonucleotides to the sigma-1 receptor protein as well as small molecule ligand with affinity for sigma receptor sites. These results have been encouraging as novel protein targets that can attenuate the actions of cocaine are desperately needed as there are currently no medications approved for treatment of cocaine toxicity or addiction. Many years of research in this area have yet to produce an effective treatment and much focus was on dopamine systems. A flurry of research has been carried out to elucidate the role of sigma receptors in the blockade of cocaine effects but this research has yet to yield a clinical agent. This review summarizes the work to date on the linkage of sigma receptors and the actions of cocaine and the progress that has been made with regard to small molecules. Although there is still a lack of an agent in clinical trials with a sigma receptor mechanism of action, work is progressing and the ligands are becoming more selective for sigma systems and the potential remains high.


Journal of Pharmacology and Experimental Therapeutics | 2010

A novel substituted piperazine, CM156, attenuates the stimulant and toxic effects of cocaine in mice.

Yan-Tong Xu; Nidhi Kaushal; Jamaluddin Shaikh; L. Wilson; Christophe Mesangeau; Christopher R. McCurdy; Rae R. Matsumoto

Cocaine is a highly abused drug without effective pharmacotherapies to treat it. It interacts with sigma (σ) receptors, providing logical targets for the development of medications to counteract its actions. Cocaine causes toxic and stimulant effects that can be categorized as acute effects such as convulsions and locomotor hyperactivity and subchronic effects including sensitization and place conditioning. In the present study, 3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d]thiazole-2(3H)-thione (CM156), a novel compound, was developed and tested for interactions with σ receptors using radioligand binding studies. It was also evaluated against cocaine-induced effects in behavioral studies. The results showed that CM156 has nanomolar affinities for each of the σ receptor subtypes in the brain and much weaker affinities for non-σ binding sites. Pretreatment of male Swiss-Webster mice with CM156, before administering either a convulsive or locomotor stimulant dose of cocaine, led to a significant attenuation of these acute effects. CM156 also significantly reduced the expression of behavioral sensitization and place conditioning evoked by subchronic exposure to cocaine. The protective effects of CM156 are consistent with σ receptor-mediated actions. Together with previously reported findings, the data from CM156 and related σ compounds indicate that σ receptors can be targeted to alleviate deleterious actions of cocaine.


Neuropharmacology | 2011

CM156, a high affinity sigma ligand, attenuates the stimulant and neurotoxic effects of methamphetamine in mice.

Nidhi Kaushal; Michael J. Seminerio; Jamaluddin Shaikh; Mark A. Medina; Christophe Mesangeau; L. Wilson; Christopher R. McCurdy; Rae R. Matsumoto

Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse. Low and high dose administration of METH leads to locomotor stimulation, and dopaminergic and serotonergic neurotoxicity, respectively. The behavioral stimulant and neurotoxic effects of METH can contribute to addiction and other neuropsychiatric disorders, thus necessitating the identification of potential pharmacotherapeutics against these effects produced by METH. METH binds to σ receptors at physiologically relevant concentrations. Also, σ receptors are present on and can modulate dopaminergic and serotonergic neurons. Therefore, σ receptors provide a viable target for the development of pharmacotherapeutics against the adverse effects of METH. In the present study, CM156, a σ receptor ligand with high affinity and selectivity for σ receptors over 80 other non-σ binding sites, was evaluated against METH-induced stimulant, hyperthermic, and neurotoxic effects. Pretreatment of male, Swiss Webster mice with CM156 dose dependently attenuated the locomotor stimulation, hyperthermia, striatal dopamine and serotonin depletions, and striatal dopamine and serotonin transporter reductions produced by METH, without significant effects of CM156 on its own. These results demonstrate the ability of a highly selective σ ligand to mitigate the effects of METH.


The Journal of Nuclear Medicine | 2014

Evaluation of σ-1 Receptor Radioligand 18F-FTC-146 in Rats and Squirrel Monkeys Using PET

Michelle L. James; Bin Shen; Carsten H. Nielsen; Deepak Behera; Christine L. Buckmaster; Christophe Mesangeau; Cristina Zavaleta; Pradeep K. Vuppala; Seshulatha Jamalapuram; Bonnie A. Avery; David M. Lyons; Christopher R. McCurdy; Sandip Biswal; Sanjiv S. Gambhir; Frederick T. Chin

The noninvasive imaging of σ-1 receptors (S1Rs) could provide insight into their role in different diseases and lead to novel diagnostic/treatment strategies. The main objective of this study was to assess the S1R radiotracer 18F-FTC-146 in rats. Preliminary squirrel monkey imaging and human serum/liver microsome studies were performed to gain information about the potential of 18F-FTC-146 for eventual clinical translation. Methods: The distribution and stability of 18F-FTC-146 in rats were assessed via PET/CT, autoradiography, γ counting, and high-performance liquid chromatography (HPLC). Preliminary PET/MRI of squirrel monkey brain was conducted along with HPLC assessment of 18F-FTC-146 stability in monkey plasma and human serum. Results: Biodistribution studies showed that 18F-FTC-146 accumulated in S1R-rich rat organs, including the lungs, pancreas, spleen, and brain. Pretreatment with known S1R compounds, haloperidol, or BD1047, before radioligand administration, significantly attenuated 18F-FTC-146 accumulation in all rat brain regions by approximately 85% (P < 0.001), suggesting radiotracer specificity for S1Rs. Similarly, PET/CT and autoradiography results demonstrated accumulation of 18F-FTC-146 in rat brain regions known to contain S1Rs and that this uptake could be blocked by BD1047 pretreatment. Ex vivo analysis of 18F-FTC-146 in the brain showed that only intact radiotracer was present at 15, 30, and 60 min, whereas rapid metabolism of residual 18F-FTC-146 was observed in rat plasma. Preliminary monkey PET/MRI studies demonstrated specific accumulation of 18F-FTC-146 in the brain (mainly in cortical structures, cerebellum, and vermis) that could be attenuated by pretreatment with haloperidol. HPLC of monkey plasma suggested radioligand metabolism, whereas 18F-FTC-146 appeared to be stable in human serum. Finally, liver microsome studies revealed that 18F-FTC-146 has a longer half-life in human microsomes, compared with rodents. Conclusion: Together, these results indicate that 18F-FTC-146 is a promising tool for visualizing S1Rs in preclinical studies and that it has potential for mapping these sites in the human brain.

Collaboration


Dive into the Christophe Mesangeau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rae R. Matsumoto

Touro University California

View shared research outputs
Top Co-Authors

Avatar

Sanju Narayanan

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Jacques H. Poupaert

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Bonnie A. Avery

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nidhi Kaushal

West Virginia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge