Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Moreau is active.

Publication


Featured researches published by Christophe Moreau.


The FASEB Journal | 2000

ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex

Martin Bienengraeber; Alexey E. Alekseev; M. Roselle Abraham; Antonio J. Carrasco; Christophe Moreau; Michel Vivaudou; Petras P. Dzeja; Andre Terzic

ATP‐sensitive K+ (KATP) channels are unique metabolic sensors formed by association of Kir6.2, an inwardly rectifying K+ channel, and the sulfonylurea receptor SUR, an ATP binding cassette protein. We identified an ATPase activity in immunoprecipitates of cardiac KATP channels and in purified fusion proteins containing nucleotide binding domains NBD1 and NBD2 of the cardiac SUR2A isoform. NBD2 hydrolyzed ATP with a twofold higher rate compared to NBD1. The ATPase required Mg2+ and was insensitive to ouabain, oligomycin, thapsigargin, or levamisole. K1348A and D1469N mutations in NBD2 reduced ATPase activity and produced channels with increased sensitivity to ATP. KATP channel openers, which bind to SUR, promoted ATPase activity in purified sarcolemma. At higher concentrations, openers reduced ATPase activity, possibly through stabilization of MgADP at the channel site. K1348A and D1469N mutations attenuated the effect of openers on KATP channel activity. Opener‐induced channel activation was also inhibited by the creatine kinase/creatine phosphate system that removes ADP from the channel complex. Thus, the KATP channel complex functions not only as a K+ conductance, but also as an enzyme regulating nucleotide‐dependent channel gating through an intrinsic ATPase activity of the SUR subunit. Modulation of the channel ATPase activity and/or scavenging the product of the ATPase reaction provide novel means to regulate cellular functions associated with KATP channel opening.—Bienengraeber, M., Alekseev, A. E., Abraham, M. R., Carrasco, A. J., Moreau, C., Vivaudou, M., Dzeja, P. P., Terzic, A. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J. 14, 1943–1952 (2000)


The EMBO Journal | 2000

The molecular basis of the specificity of action of KATP channel openers

Christophe Moreau; Hélène Jacquet; Anne-Lise Prost; Nathalie D'hahan; Michel Vivaudou

KATP channels incorporate a regulatory subunit of the ATP‐binding cassette (ABC) transporter family, the sulfonylurea receptor (SUR), which defines their pharmacology. The therapeutically important K+ channel openers (e.g. pinacidil, cromakalim, nicorandil) act specifically on the SUR2 muscle isoforms but, except for diazoxide, remain ineffective on the SUR1 neuronal/pancreatic isoform. This SUR1/2 dichotomy underpinned a chimeric strategy designed to identify the structural determinants of opener action, which led to a minimal set of two residues within the last transmembrane helix of SUR. Transfer of either residue from SUR2A to SUR1 conferred opener sensitivity to SUR1, while the reverse operation abolished SUR2A sensitivity. It is therefore likely that these residues form part of the site of interaction of openers with the channel. Thus, openers would target a region that, in other ABC transporters, is known to be tightly involved with the binding of substrates and other ligands. This first glimpse of the site of action of pharmacological openers should permit rapid progress towards understanding the structural determinants of their affinity and specificity.


Proceedings of the National Academy of Sciences of the United States of America | 2012

First wave of cultivators spread to Cyprus at least 10,600 y ago

Jean-Denis Vigne; François Briois; Antoine Zazzo; George Willcox; Thomas Cucchi; Stéphanie Thiébault; Isabelle Carrère; Yodrik Franel; Régis Touquet; Chloé Martin; Christophe Moreau; Clothilde Comby; Jean Guilaine

Early Neolithic sedentary villagers started cultivating wild cereals in the Near East 11,500 y ago [Pre-Pottery Neolithic A (PPNA)]. Recent discoveries indicated that Cyprus was frequented by Late PPNA people, but the earliest evidence until now for both the use of cereals and Neolithic villages on the island dates to 10,400 y ago. Here we present the recent archaeological excavation at Klimonas, which demonstrates that established villagers were living on Cyprus between 11,100 and 10,600 y ago. Villagers had stone artifacts and buildings (including a remarkable 10-m diameter communal building) that were similar to those found on Late PPNA sites on the mainland. Cereals were introduced from the Levant, and meat was obtained by hunting the only ungulate living on the island, a small indigenous Cypriot wild boar. Cats and small domestic dogs were brought from the mainland. This colonization suggests well-developed maritime capabilities by the PPNA period, but also that migration from the mainland may have occurred shortly after the beginning of agriculture.


The Journal of Membrane Biology | 2010

A Simple Method for the Reconstitution of Membrane Proteins into Giant Unilamellar Vesicles

Armelle Varnier; Frédérique Kermarrec; Iulia Blesneac; Christophe Moreau; Lavinia Liguori; Jean Luc Lenormand; Nathalie Picollet-D’hahan

A simple method for the reconstitution of membrane protein from submicron proteoliposomes into giant unilamellar vesicles (GUVs) is presented here: This method does not require detergents, fusion peptides or a dehydration step of the membrane protein solution. In a first step, GUVs of lipids were formed by electroformation, purified and concentrated; and in a second step, the concentrated GUV solution was added to a small volume of vesicles or proteoliposomes. Material transfer from submicron vesicles and proteoliposomes to GUVs occurred spontaneously and was characterized with fluorescent microscopy and patch-clamp recordings. As a functional test, the voltage-dependent, anion-selective channel protein was reconstituted into GUVs, and its electrophysiological activity was monitored with the patch clamp. This method is versatile since it is independent of the presence of the protein, as demonstrated by the fusion of fluorescently labeled submicron vesicles and proteoliposomes with GUVs.


Nature Nanotechnology | 2008

Coupling ion channels to receptors for biomolecule sensing.

Christophe Moreau; Julien P. Dupuis; Jean Revilloud; Karthik Arumugam; Michel Vivaudou

Nanoscale electrical biosensors are promising tools for diagnostics and high-throughput screening systems. The electrical signal allows label-free assays with a high signal-to-noise ratio and fast real-time measurements. The challenge in developing such biosensors lies in functionally connecting a molecule detector to an electrical switch. Advances in this field have relied on synthetic ion-conducting pores and modified ion channels that are not yet suitable for biomolecule screening. Here we report the design and characterization of a novel bioelectric-sensing platform engineered by coupling an ion channel, which serves as the electrical probe, to G-protein-coupled receptors (GPCRs), a family of receptors that detect molecules outside the cell. These ion-channel-coupled receptors may potentially detect a wide range of ligands recognized by natural or altered GPCRs, which are known to be major pharmaceutical targets. This could form a unique platform for label-free drug screening.


Molecular Pharmacology | 2008

Coassembly of Different Sulfonylurea Receptor Subtypes Extends the Phenotypic Diversity of ATP-sensitive Potassium (KATP) Channels

Adam Wheeler; Chuan Wang; Ke Yang; Kun Fang; Kevin Davis; Amanda M. Styer; Uyenlinh L. Mirshahi; Christophe Moreau; Jean Revilloud; Michel Vivaudou; Shunhe Liu; Tooraj Mirshahi; Kim W. Chan

KATP channels are metabolic sensors and targets of potassium channel openers (KCO; e.g., diazoxide and pinacidil). They comprise four sulfonylurea receptors (SUR) and four potassium channel subunits (Kir6) and are critical in regulating insulin secretion. Different SUR subtypes (SUR1, SUR2A, SUR2B) largely determine the metabolic sensitivities and the pharmacological profiles of KATP channels. SUR1- but not SUR2-containing channels are highly sensitive to metabolic inhibition and diazoxide, whereas SUR2 channels are sensitive to pinacidil. It is generally believed that SUR1 and SUR2 are incompatible in channel coassembly. We used triple tandems, T1 and T2, each containing one SUR (SUR1 or SUR2A) and two Kir6.2Δ26 (last 26 residues are deleted) to examine the coassembly of different SUR. When T1 or T2 was expressed in Xenopus laevis oocytes, small whole-cell currents were activated by metabolic inhibition (induced by azide) plus a KCO (diazoxide for T1, pinacidil for T2). When coexpressed with any SUR subtype, the activated-currents were increased by 2- to 13-fold, indicating that different SUR can coassemble. Consistent with this, heteromeric SUR1+SUR2A channels were sensitive to azide, diazoxide, and pinacidil, and their single-channel burst duration was 2-fold longer than that of the T1 channels. Furthermore, SUR2A was coprecipitated with SUR1. Using whole-cell recording and immunostaining, heteromeric channels could also be detected when T1 and SUR2A were coexpressed in mammalian cells. Finally, the response of the SUR1+SUR2A channels to azide was found to be intermediate to those of the homomeric channels. Therefore, different SUR subtypes can coassemble into KATP channels with distinct metabolic sensitivities and pharmacological profiles.


The Journal of Physiology | 2008

Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2

Julien P. Dupuis; Jean Revilloud; Christophe Moreau; Michel Vivaudou

Cardiac ATP‐sensitive potassium (KATP) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up‐ and down‐regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65‐residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide‐binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch‐clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory – but not inhibitory – transduction processes. These results indicate that, within the KATP channel complex, the proximal C‐terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up‐regulation.


PLOS ONE | 2012

Engineering of an artificial light-modulated potassium channel

Lydia N. Caro; Christophe Moreau; Argel Estrada-Mondragon; Oliver P. Ernst; Michel Vivaudou

Ion Channel-Coupled Receptors (ICCRs) are artificial receptor-channel fusion proteins designed to couple ligand binding to channel gating. We previously validated the ICCR concept with various G protein-coupled receptors (GPCRs) fused with the inward rectifying potassium channel Kir6.2. Here we characterize a novel ICCR, consisting of the light activated GPCR, opsin/rhodopsin, fused with Kir6.2. To validate our two-electrode voltage clamp (TEVC) assay for activation of the GPCR, we first co-expressed the apoprotein opsin and the G protein-activated potassium channel Kir3.1F137S (Kir3.1*) in Xenopus oocytes. Opsin can be converted to rhodopsin by incubation with 11-cis retinal and activated by light-induced retinal cis→trans isomerization. Alternatively opsin can be activated by incubation of oocytes with all-trans-retinal. We found that illumination of 11-cis-retinal-incubated oocytes co-expressing opsin and Kir3.1* caused an immediate and long-lasting channel opening. In the absence of 11-cis retinal, all-trans-retinal also opened the channel persistently, although with slower kinetics. We then used the oocyte/TEVC system to test fusion proteins between opsin/rhodopsin and Kir6.2. We demonstrate that a construct with a C-terminally truncated rhodopsin responds to light stimulus independent of G protein. By extending the concept of ICCRs to the light-activatable GPCR rhodopsin we broaden the potential applications of this set of tools.


PLOS ONE | 2011

β2-Adrenergic Ion-Channel Coupled Receptors as Conformational Motion Detectors

Lydia N. Caro; Christophe Moreau; Jean Revilloud; Michel Vivaudou

Ion Channel-Coupled Receptors (ICCRs) are artificial proteins comprised of a G protein-coupled receptor and a fused ion channel, engineered to couple channel gating to ligand binding. These novel biological objects have potential use in drug screening and functional characterization, in addition to providing new tools in the synthetic biology repertoire as synthetic K+-selective ligand-gated channels. The ICCR concept was previously validated with fusion proteins between the K+ channel Kir6.2 and muscarinic M2 or dopaminergic D2 receptors. Here, we extend the concept to the distinct, longer β2-adrenergic receptor which, unlike M2 and D2 receptors, displayed barely detectable surface expression in our Xenopus oocyte expression system and did not couple to Kir6.2 when unmodified. Here, we show that a Kir6.2-binding protein, the N-terminal transmembrane domain of the sulfonylurea receptor, can greatly increase plasma membrane expression of β2 constructs. We then demonstrate how engineering of both receptor and channel can produce β2-Kir6.2 ICCRs. Specifically, removal of 62–72 residues from the cytoplasmic C-terminus of the receptor was required to enable coupling, suggesting that ligand-dependent conformational changes do not efficiently propagate to the distal C-terminus. Characterization of the β2 ICCRs demonstrated that full and partial agonists had the same coupling efficacy, that an inverse agonist had no effect and that the stabilizing mutation E122 W reduced agonist-induced coupling efficacy without affecting affinity. Because the ICCRs are expected to report motions of the receptor C-terminus, these results provide novel insights into the conformational dynamics of the β2 receptor.


Frontiers in Immunology | 2016

Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q.

Christophe Moreau; Isabelle Bally; Anne Chouquet; Barbara Bottazzi; Berhane Ghebrehiwet; Christine Gaboriaud; Nicole Thielens

Complement C1q is a soluble pattern recognition molecule comprising six heterotrimeric subunits assembled from three polypeptide chains (A–C). Each heterotrimer forms a collagen-like stem prolonged by a globular recognition domain. These recognition domains sense a wide variety of ligands, including pathogens and altered-self components. Ligand recognition is either direct or mediated by immunoglobulins or pentraxins. Multivalent binding of C1q to its targets triggers immune effector mechanisms mediated via its collagen-like stems. The induced immune response includes activation of the classical complement pathway and enhancement of the phagocytosis of the recognized target. We report here, the first production of a single-chain recombinant form of human C1q globular region (C1q-scGR). The three monomers have been linked in tandem to generate a single continuous polypeptide, based on a strategy previously used for adiponectin, a protein structurally related to C1q. The resulting C1q-scGR protein was produced at high yield in stably transfected 293-F mammalian cells. Recombinant C1q-scGR was correctly folded, as demonstrated by its X-ray crystal structure solved at a resolution of 1.35 Å. Its interaction properties were assessed by surface plasmon resonance analysis using the following physiological C1q ligands: the receptor for C1q globular heads, the long pentraxin PTX3, calreticulin, and heparin. The 3D structure and the binding properties of C1q-scGR were similar to those of the three-chain fragment generated by collagenase digestion of serum-derived C1q. Comparison of the interaction properties of the fragments with those of native C1q provided insights into the avidity component associated with the hexameric assembly of C1q. The interest of this functional recombinant form of the recognition domains of C1q in basic research and its potential biomedical applications are discussed.

Collaboration


Dive into the Christophe Moreau's collaboration.

Top Co-Authors

Avatar

Michel Vivaudou

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jean Revilloud

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuelle Delqué-Količ

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Michel Vivaudou

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Hélène Valladas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J-P Dumoulin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Julien P. Dupuis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

I Caffy

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge